×

Integers without large prime factors. (English) Zbl 0797.11070

Since K. K. Norton’s survey [Mem. Am. Math. Soc. 106, 106 p. (1971; Zbl 0211.37801)], there has been an explosion of interest in the distribution of integers without large prime factors, the so-called “smooth numbers”, in large part because of the ground-breaking contributions of the present two authors, Alladi, Balog, Erdős, Friedlander, Hensley, Ivić, Pomerance and many others. Asymptotic estimates have now been proved, in very wide ranges, for the number of smooth numbers up to \(x\), in arithmetic progressions, in short intervals, as one less than a prime, \(\dots\). Moreover they have been applied to help our understanding of a wide diversity of number theory questions, such as Waring’s problem, the Fermat and \(abc\) conjectures, the analysis of algorithms, particularly for factoring and primality testing, Carmichael numbers, gaps between primes, and a host of other problems besides. The authors here survey these and other developments in the subject.
The survey is excellently organized, well-written, thorough, and goes into considerable depth for those questions which deserve that kind of attention. This will now complement Norton’s survey as the primary references in the area; and it also will serve as an excellent guide for those who wish to learn about the subject.

MSC:

11N25 Distribution of integers with specified multiplicative constraints
11-02 Research exposition (monographs, survey articles) pertaining to number theory

Citations:

Zbl 0211.37801

References:

[1] Abramowitz, M. & Stegun, I., (1964) Handbook of Mathematical Functions, National Bureau of Standards, Wash ington1964; Tenth Printing, Dover, New York, 1972. · Zbl 0171.38503
[2] Alford, W.R., Granville, A., & Pomerance, C., (1993) There are infinitely many Carmichael numbers, preprint. · Zbl 0816.11005
[3] Alladi, K., (1982a) Asymptotic estimates of sums involving the Moebius function. II, Trans. Amer. Math. Soc. 272, 87-105. · Zbl 0499.10050
[4] (1982b) The Turán-Kubilius inequality for integers without large prime factors, J. Reine Angew. Math.335, 180-196. · Zbl 0483.10050
[5] (1987) An Erdös-Kac theorem for integers without large prime factors, Acta Arith.49, 81-105. · Zbl 0627.10030
[6] Alladi, K. and Erdös, P., (1977) On an additive arithmetic function, Pacific J. Math.71, 275-294. · Zbl 0359.10038
[7] (1979) On the asymptotic behavior of large prime factors of integers, Pacific J. Math.82, 295-315. · Zbl 0419.10042
[8] Balog, A., (1984) p + a without large prime factors, in: Séminaire de Théorie des Nombres, Bordeaux 1983-84, Univ. Bordeaux, Talence, Exp. No. 31, 5 pp. · Zbl 0588.10052
[9] (1987) On the distribution of integers having no large prime factor, in: Journées Arithmétiques, Besançon 1985, Astérisque147/148, pp. 27-31. · Zbl 0617.10031
[10] (1989) On additive representations of integers, Acta Math. Hungar.54, 297-301. · Zbl 0689.10050
[11] Balog, A., Erdös, P., & Tenenbaum, G., (1990) On arithmetic functions involving consecutive divisors, in: Analytic Number Theory (B. C. Berndt et al., eds.), Proc. Conf. in Honor of Paul T. Bateman, Birkhäuser, Progress in Math.85, 77-90. · Zbl 0718.11041
[12] Balog, A. & Pomerance, C., (1992) The distribution of smooth numbers in arithmetic progressions, Amer. Math. Soc.115, 33-43. · Zbl 0752.11036
[13] Balog, A. & Sárközy, A., (1984a) On sums of integers having small prime factors. I, Stud. Sci. Math. Hungar. 19, 35-47. · Zbl 0569.10025
[14] (1984b) On sums of integers having small prime factors. II, Stud. Sci. Math. Hungar. 19, 81-88. · Zbl 0569.10026
[15] Beukers, F., (1975) The lattice-points of n-dimensional tedrahedra, Indag. Math.37, 365-372. · Zbl 0312.10037
[16] Billingsley, P., (1972) On the distribution of large prime divisors, Period. Math. Hungar.2, 283-289. · Zbl 0242.10033
[17] Brouwer, A.E., (1974) Two number theoretic sums, Math. CentrumAmsterdam, Report ZW 19/74. · Zbl 0274.10042
[18] Bruijn, N. G. de, (1951a) The asymptotic behaviour of a function occurring in the theory of primes, J. Indian Math. Soc. (N.S.) 15, 25-32. · Zbl 0043.06502
[19] (1951b) On the number of positive integers ≤ x and free of prime factors > y, Nederl. Akad. Wetensch. Proc. Ser. A 54, 50-60. · Zbl 0042.04204
[20] (1966) On the number of positive integers ≤ x and free of prime factors > y, II, Nederl. Akad. Wetensch. Proc. Ser. A 69, 239-247. · Zbl 0139.27203
[21] Bruijn, N. G. de & Lint, J. H. van, (1964) Incomplete sums of multiplicative functions I, II, Nederl. Akad. Wetensch. Proc. Ser. A 67, 339-347; 348-359. · Zbl 0131.28703
[22] Buchstab, A.A., (1949) On those numbers in an arithmetic progression all prime factors of which are small in magnitude (Russian), Dokl. Akad. Na u k SSSR67, 5-8. · Zbl 0033.16304
[23] Canfield, E.R., (1982) On the asymptotic behavior of the Dickman-de Bruijn function, Congr. Numer.38, 139-148. · Zbl 0511.10005
[24] E, R.Canfield, P. Erdös, & Pomerance, C., (1983) On a problem of Oppenheim concerning “Factorisatio Numerorum”, J. Number Theory17, 1-28. · Zbl 0513.10043
[25] Car, M., (1987) Théorèmes de densité dans Fq[X], Acta Arith.48, 145-165. · Zbl 0575.12017
[26] Chowla, S.D. and Vijayaraghavan, T., (1947) On the largest prime divisors of numbers, J. Indian Math. Soc. (N. S.) 11, 31-37. · Zbl 0039.03702
[27] De Koninck, J.-M. & Hensley, D., (1978) Sums taken over n ≤ x with prime factors ≤ y of zΩ(n), and their derivatives with respect to z, J. Indian Math. Soc. (N. S.) 42, 353-365. · Zbl 0473.10028
[28] De Koninck, J.-M. & Ivić, A., (1984a) Sommes de réciproques de grandes fonctions additives, Publ. Inst. Math. (Beograd) (N. S.) 35, 41-48. · Zbl 0552.10026
[29] (1984b) The distribution of the average prime divisor of an integer, Arch. Math.43, 37-43. · Zbl 0519.10027
[30] De Koninck, J.-M. & Mercier, A., (1989) Les fonctions arithmetiques et le plus grand facteur premier, Acta Arith.52, 25-48. · Zbl 0687.10030
[31] Deshouillers, J.-M. & Iwaniec, H., (1982) On the greatest prime factor of n2+1, Ann. Inst. Fourier (Grenoble) 32, 1-11. · Zbl 0489.10038
[32] Dickman, K., (1930) On the frequency of numbers containing prime factors of a certain relative magnitude, Ark. Mat. Astr. Fys.22, 1-14. · JFM 56.0178.04
[33] Eggleton, R. & Selfridge, J.L., (1976) Consecutive integers with no large prime factors, J. Austral. Math. Soc. Ser. A 22, 1-11. · Zbl 0343.10024
[34] Ennola, V., (1969) On numbers with small prime divisors, Ann. Acad. Sci. Fenn. Ser. AI440, 16 pp. · Zbl 0174.33903
[35] Erdös, P., (1935) On the normal number of prime factors of p -1 and some other related problems concerning Euler’s Φ-function, Quart. J. Math. (Oxford) 6, 205-213. · JFM 61.0129.05
[36] (1952) On the greatest prime factor of Π f (k), J. London Math. Soc.27, 379-384. · Zbl 0046.04102
[37] (1955) On consecutive integers, Nieuw Arch. Wisk. (3) 3, 124-128. · Zbl 0065.27605
[38] Erdös, P. & Ivić, A., (1980) Estimates for sums involving the largest prime factor of an integer and certain related additive functions, Stud. Sci. Math. Hungar.15, 183-199. · Zbl 0455.10031
[39] Erdös, P., Ivić, A., and Pomerance, C., (1986) On sums involving reciprocals of the largest prime factor of an integer, Glas. Mat. III. Ser.21 (41), 283-300. · Zbl 0615.10055
[40] Erdös, P. & Schinzel, A., (1990) On the greatest prime factor of Πx k=1 f(k), Acta Arith.55, 191-200. · Zbl 0715.11050
[41] Fainleib, A.S., (1967) On the estimation from below of the number of numbers with small prime factors (Russian), Dokl. Akad. Nauk USSR7, 3-5. · Zbl 0216.31101
[42] Fouvry, E. & Grupp, F., (1986) On the switching principle in sieve theory, J. Reine Angew. Math.370, 101-126. · Zbl 0588.10051
[43] Fouvry, E. & Tenenbaum, G., (1990) Diviseurs de Titchmarsh des entiers sans grand facteur premier, in: Analytic Number Theory (E. Fouvry, ed.), Tokyo 1988, 1434, Springer, Berlin, pp. 86-102. · Zbl 0708.11043
[44] (1991) Entiers sans grand facteur premier en progressions arithmétiques, London Math. Soc. (3) 63, 449-494. · Zbl 0745.11042
[45] Friedlander, J.B., (1972) On the number of ideals free of large prime divisors, J. Reine Angew. Math.255, 1-7. · Zbl 0243.10034
[46] (1973a) On the least kth power residue in an algebraic number field, London Math. Soc. (3) 26, 19-34. · Zbl 0253.12002
[47] (1973b) Integers without large prime factors, Nederl. Akad. Wetensch. Proc. Ser. A 76, 443-451. · Zbl 0267.10057
[48] (1976) Integers free from large and small primes, Proc. London Math. Soc. (3) 33, 565-576. · Zbl 0344.10021
[49] (1981) Integers without large prime factors. II, Acta Arith.39, 53-57. · Zbl 0485.10033
[50] (1984a) Large prime factors in small intervals, in: Topics in classical number theory, 34, North-Holland, Amsterdam, 511-518. · Zbl 0546.10035
[51] (1984b) Integers without large prime factors. III, Arch. Math.43, 32-36. · Zbl 0521.10036
[52] (1985) Notes on Chebyshev’s method, Rocky Mountain J. Math.15, 377-383. · Zbl 0585.10031
[53] (1989) Shifted primes without large prime factors, in: Number Theory and Applications (R. A. Mollin, ed.), Kluver, pp. 393-401. · Zbl 0686.10030
[54] Friedlander, J.B. & Lagarias, J.C., (1987) On the distribution in short intervals of integers having no large prime factor, J. Number Theory25, 249-273. · Zbl 0606.10033
[55] Galambos, J., (1976) The sequence of prime divisors of integers, Acta Arith.31, 213-218. · Zbl 0303.10039
[56] Gillet, J.R., (1970) On the largest prime divisor of ideals in fields of degree n, Duke Math. J.37, 589-600. · Zbl 0211.07804
[57] Goldston, D.A. & McCurley, K.S., (1988) Sieving the positive integers by large primes, J. Number Theory28, 94-115. · Zbl 0639.10028
[58] Granville, A., (1989) On positive integers ≤ x with prime factors ≤ tlog x, in: Number Theory and Applications (R. A. Mollin, ed.), Kluver, pp. 403-422. · Zbl 0686.10031
[59] (1991a) The lattice points of an n-dimensional tedrahedron, Aequationes Math. 41, 234-241. · Zbl 0733.11034
[60] (1991b) On pairs of coprime integers with no large prime factors, Expos. Math.9, 335-350. · Zbl 0745.11043
[61] (1993a) Integers, without large prime factors, in arithmetic progressions. I, Acta Math.170, 255-273. · Zbl 0784.11045
[62] (1993b) Integers, without large prime factors, in arithmetic progressions. II, preprint. · Zbl 0784.11045
[63] Hafner, J.L., (1993) On smooth numbers in short intervals under the Riemann Hypothesis, preprint.
[64] Halberstarn, H. & Richert, H.-E., (1971) Mean value theorems for a class of arithmetic functions, Acta Arith.18, 243-256; Add. & Corr., ibid. 28, 107-110. · Zbl 0217.32002
[65] (1974) Sieve Methods, Academic Press, London, New York, San Francisco. · Zbl 0298.10026
[66] Halberstam, H. & Roth, K.F., (1951) On the gaps between consecutive k-free integers, J. London Math. Soc.26, 268-273. · Zbl 0043.04901
[67] Harman, G., (1991) Short intervals containing numbers without large prime factors, Math. Proc. Cambridge Philos. Soc.109, 1-5. · Zbl 0724.11041
[68] Hazlewood, D.G., (1973) On integers all of whose prime factors are small, Bull. London Math. Soc.5, 159-163. · Zbl 0276.10022
[69] (1975a) On k-free integers with small prime factors, Proc. Amer. Math. Soc.52, 40-44. · Zbl 0279.10033
[70] (1975b) Sums over positive integers with few prime factors, J. Number Theory7, 189-207. · Zbl 0302.10037
[71] (1975c) On sums over Gaussian integers, Trans. Amer. Math. Soc.209, 295-310. · Zbl 0308.10038
[72] (1977) On ideals having only small prime factors, Rocky Mountain J. Math.7, 753-768. · Zbl 0373.12004
[73] Heath-Brown, D.R., (1987) Consecutive almost-primes, J. Indian Math. Soc. (N. S.) 52, 39-49. · Zbl 0668.10051
[74] Hensley, D., (1985) The number of positive integers ≤ x and free of prime divisors > y, J. Number Theory21, 286-298. · Zbl 0575.10037
[75] (1986) A property of the counting function of integers with no large prime factors, J. Number Theory22, 46-74. · Zbl 0575.10039
[76] (1987) The distribution of Ω(n) among numbers with no large prime factors, in: Analytic Number Theory and Diophantine Problems (A. Adolphson et al., eds.), Proc. of a Conf. at Oklahoma State University 1984, Birkhauser, Progress in Math.70, 247-281. · Zbl 0626.10037
[77] Hildebrand, A., (1984a) Integers free of large prime factors and the Riemann Hypothesis, Mathematika31, 258-271. · Zbl 0544.10042
[78] (1984b) On a problem of Erdös and Alladi, Monatsh. Math.97, 119-124. · Zbl 0531.10046
[79] (1985a) Integers free of large prime factors in short intervals, Quart. J. Math. (Oxford) (2) 36, 57-69. · Zbl 0562.10018
[80] (1985b) On a conjecture of A. Balog, Proc. Amer. Math. Soc.95, 517-523. · Zbl 0597.10056
[81] (1986a) On the number of positive integers < x and free of prime factors > y, J. Number Theory22, 289-307. · Zbl 0575.10038
[82] (1986b) On the local behavior of Ψ(x, y), Trans. Amer. Math. Soc.297, 729-751. · Zbl 0611.10028
[83] (1987) On the number of prime factors of integers without large prime divisors, J. Number Theory25, 81-106. · Zbl 0621.10028
[84] (1989) Integer sets containing strings of consecutive integers, Mathematika36, 60-70. · Zbl 0685.10036
[85] Hildebrand, A. & Tenenbaum, G., (1986) On integers free of large prime factors, Trans. Amer. Math. Soc.296, 265-290. · Zbl 0601.10028
[86] (1993) On a class of difference differential equations arising in number theory, J. d’Analyse Math.61, 145-179. · Zbl 0797.11072
[87] Hmyrova, N.A., (1964) On polynomials with small prime divisors (Russian), Dokl. Akad. Nauk SSSR155, 1268-1271. · Zbl 0127.27005
[88] (1966) On polynomials with small prime divisors. II (Russian), Izv. Akad. Nauk SSSR Ser. Mat.30, 1367-1372. · Zbl 0147.03203
[89] Hooley, C., (1967) On the greatest prime factor of a quadratic polynomial, Acta Math.117, 2-16. · Zbl 0146.05704
[90] (1978) On the greatest prime factor of a cubic polynomial, J. Reine Angew. Math. 303/304, 21-50. · Zbl 0391.10028
[91] Ivić, A., (1981) Sum of reciprocals of the largest prime factor of an integer, Arch. Math.36, 57-61. · Zbl 0436.10019
[92] (1985a) The Riemann zeta-function, Wiley, New York. · Zbl 0556.10026
[93] (1985b) On squarefree numbers with restricted prime factors, Stud. Sci. Math. Hungar.20, 183-187. · Zbl 0544.10004
[94] (1987) On some estimates involving the number of prime divisors of an integer, Acta Arith.49, 21-33. · Zbl 0573.10038
[95] Hornfeck, B., (1959) Zur Verteilung gewisser Primzahlprodukte, Math. Ann.139, 14-30. · Zbl 0092.04803
[96] Ivić, A. and Pomerance, C., (1984) Estimates for certain sums involving the largest prime factor of an integer, in: Topics in classical number theory, 1981, 34, pp. 769-789. · Zbl 0546.10037
[97] Ivić, A. and Tenenbaum, G., (1986) Local densities over integers free of large prime factors, Quart. J. Math. (Oxford) (2) 37, 401-417. · Zbl 0604.10024
[98] Jordan, J.H., (1965) The divisibility of Gaussian integers by large Gaussian primes, Duke Math. J.32, 503-510. · Zbl 0156.04904
[99] Jutila, M., (1974) On numbers with a large prime factor. II, J. Indian Math. Soc.(N. S.) 38, 125-130. · Zbl 0335.10045
[100] Knuth, D.E. & Trabb Pardo, L., (1976) Analysis of a simple factorization algorithm, Theoret. Comput. Sci.3, 321-348. · Zbl 0362.10006
[101] Krause, U., (1990) Abschätzungen für die Funktion ΨK (x,y) in algebraischen Zahlkörpern, Manuscripta Math.69, 319-331. · Zbl 0759.11028
[102] Langevin, M., (1975) Plus grand facteur premier d’entiers voisins, C. R. Acad. Sci. Paris Sér. A-B 281, A491-A493. · Zbl 0311.10044
[103] Lehmer, D.H. & Lehmer, E., (1941) On the first case of Fermat’s last theorem, Bull. Amer. Math. Soc.47, 139-142. · JFM 67.0122.05
[104] Lenstra, H.W. (1987) Factoring integers with elliptic curves, Ann. Alath.126, 649-673. · Zbl 0629.10006
[105] Levin, B.V. & Chariev, U., (1986) Sums of multiplicative functions with respect to numbers with prime divisors from given intervals (Russian), Dokl. Akad. Nauk. Tadzh. SSSR29, 383-387. · Zbl 0621.10033
[106] Levin, B.V. & Fainleib, A.S., (1967) Application of some integral equations to problems in number theory, Russian Math. Surveys22, 119-204. · Zbl 0204.06502
[107] Lint, J. H. van & Richert, H.-E., (1964) Über die Surmme Σn≤x,P(n)≤ y μ2(n)/ϕ(n), Nederl. Akad. Wetensch. Proc. Ser. A 67, 582-587. · Zbl 0318.10032
[108] Lloyd, S.P., (1984) Ordered prime divisors of a random integer, Ann. Probability12, 1205-1212. · Zbl 0551.10042
[109] Lovorn, R., (1992) Rigorous, subexponential algorithms for discrete logarithms over finite fields, Ph.D. thesis, Univ. of Georgia, 1992.
[110] Lune, J. van de, (1974) The truncated average limit and one of its applications in analytic number theory, Math. CentrumAmsterdam, Report ZW 20/74. · Zbl 0291.10035
[111] Montgomery, H.L., (1971) Topics in Multiplicative Number Theory, 227, Springer, Berlin. · Zbl 0216.03501
[112] Moree, P., (1992) An interval result for the number field Ψ (x, y ) function, Manuscripta Math.76, 437-450. · Zbl 0772.11044
[113] (1993) Psixyology and Diophantine equations, Thesis, Leiden University. · Zbl 0784.11046
[114] Moree, P. & Stewart, C.L., (1990) Some Ramanujan-Nagell equations with many solutions, Indag. Math.(N. S.) 1, 465-472. · Zbl 0718.11011
[115] Motohashi, Y., (1976) An induction principle for the generalization of Bombieri’s prime number theorem, Proc. Japan Acad.52, 273-275. · Zbl 0355.10035
[116] (1979) A note on almost primes in short intervals, Proc. Japan Acad. Sci. Ser. A Math. Sci.55 (1979), 225-226. · Zbl 0445.10032
[117] Naimi, M., (1988) Les entiers sans facteur carre ≤ x dont les facteurs premiers sont ≤y, in: Groupe de travail en théorie analytique des nombres 1986-87, Publ. Math. Orsay88-01, pp. 69-76. · Zbl 0669.10066
[118] Nagell, T., (1921) Generalisation d’un théorème de Tchébycheff, J. Math. Pur. Appl. (8) 4, 343-356. · JFM 48.1173.01
[119] Norton, K.K., (1968) Upper bounds for kth power coset representatives modulo n, Acta Arith.15, 161-179. · Zbl 0177.06801
[120] (1971) Numbers with small prime factors and the least kth power non residue, Memoirs of the Amer. Math. Soc.106. · Zbl 0211.37801
[121] Odlyzko, A.M., (1985) Discrete logarithms in finite fields and their cryptographic significance, in Advances in Cryptology: Proceedings of Eurocrypt ’84, (T. Beth, N. Cot, I. Ingemarsson, eds.), 209, Springer-Verlag. · Zbl 0594.94016
[122] (1993) Discrete logarithms and smooth polynomials, preprint.
[123] C, Pomerance, (1980) Popular values of Euler’s function, Mathematika27, 84-89. · Zbl 0437.10001
[124] (1987) Fast, rigorous factorization and discrete logarithm algorithms, in: Discrete Algorithms and Complexity (Kyoto, 1986), Academic Press, Boston. · Zbl 0659.10003
[125] Ramachandra, K., (1969) A note on numbers with a large prime factor. J. London Math. Soc. (2) 1, 303-306. · Zbl 0179.07301
[126] (1970) A note on numbers with a large prime factor. II, J. Indian Math. Soc.(N. S.) 34, 39-48. · Zbl 0218.10057
[127] (1971) A note on numbers with a large prime factor. III, Acta Arith.19, 49-62. · Zbl 0218.10058
[128] Ramachandra, K. & Shorey, T.N., (1973) On gaps between numbers with a large prime factor, Acta Arith.24, 99-111. · Zbl 0258.10022
[129] Ramaswami, V., (1949) On the number of positive integers less than x and free of prime divisors greater than xc, Bull. Amer. Math. Soc.55, 1122-1127. · Zbl 0035.31502
[130] (1951) Number of integers in an assigned arithmetic progression, ≤ x and prime to primes greater than xc, Proc. Amer. Math. Soc.2, 318-319. · Zbl 0043.04701
[131] Rankin, R.A., (1938) The difference between consecutive prime numbers, J. London Math. Soc.13, 242-247. · JFM 64.0982.01
[132] Rongen, J. B. van, (1975) On the largest prime divisor of an integer, Indag. Math.37, 70-76. · Zbl 0298.10023
[133] Saias, E., (1989) Sur le nombre des entiers sans grand facteur premier, J. Number Theory32, 78-99. · Zbl 0676.10028
[134] (1992) Entiers sans grand ni petit facteur premier. I, Acta Arith.61, 347-374. · Zbl 0766.11038
[135] Scourfield, E.J., (1991) On some sums involving the largest prime divisor of n, Acta Arith.59, no 4, 339-363. · Zbl 0708.11047
[136] Shorey, T.N., (1973) On gaps between numbers with a large prime factor II, Acta Arith.25, 365-373. · Zbl 0258.10023
[137] Smida, H., (1991) Sur les puissances de convolution de la fonction de Dickman, Acta Arith.59, no 2, 123-143. · Zbl 0881.11069
[138] (1993) Valeur moyenne des fonctions de Piltz sur les entiers sans grand facteur premier, Acta Arith.63, no 1, 21-50. · Zbl 0769.11034
[139] Specht, W., (1949) Zahlenfolgen mit endlich vielen Primteilern, S.-B. Bayer. Akad. Wiss. Math. Nat. Abt. 1948, 149-169. · Zbl 0034.31503
[140] Tenenbaum, G., (1985) Sur les entiers sans grand facteur premier, in: Séminaire de Théorie des Nombres, Bordeaux1984-85, Univ. Bordeaux I, Talence, 12 pp.
[141] (1988) La méthode du col en théorie analytique des nombres, in: Séminaire de Théorie des Nombres (C. Goldstein, ed.), Paris1985-86, Birkhäuser, Progress in Math.75, 411-441. · Zbl 0664.10024
[142] (1990a) Introduction à la théorie analytique et probabiliste des nombres, Publ. Inst. Elie Cartan, Vol. 13, Univ. Nancy1. · Zbl 0788.11001
[143] (1990b) Sur un problème d’Erdös et Alladi, in: Séminaire de Théorie des Nombres (C. Goldstein, ed.), Paris 1988-89, Birkhäuser, Progress in Math.91, 221-239. · Zbl 0721.11035
[144] (1990c) Sur une question d’Erdös et Schinzel II, Inventiones Math.99, 215-224. · Zbl 0699.10063
[145] (1993) Cribler les entiers sans grand facteur premier, in: R.C.Vaughan (ed.) Theory and applications of numbers without large prime factors, Phal. Trans. Royal l Soc. London, series A, to appear.
[146] Tijdeman, R., (1972) On the maximal distance of numbers with a large prime factor, J. London Math. Soc. (2) 5, 313-320. · Zbl 0238.10018
[147] (1973) On integers with many small prime factors, Compositio Math.26, 319-330. · Zbl 0267.10056
[148] (1974) On the maximal distance between integers composed of small primes, Compositio Math.28, 159-162. · Zbl 0283.10024
[149] Timofeev, N.M., (1977) Polynomials with small prime divisors (Russian), Taskent Gos. Univ. Naun. Trudy 548 Voprosy Mat., 87-91. · Zbl 0419.10041
[150] Titchmarsh, E.C. and Heath-Brown, D.R., (1986) The theory of the Riemann zeta function, Second Edition, Oxford Univ. Press, Oxford. · Zbl 0601.10026
[151] Turk, J., (1980) Prime divisors of polynomials at consecutive integers, J. Reine Angew. Math.319, 142-152. · Zbl 0425.10045
[152] (1982) Products of integers in short intervals, Report 8228M, Econometric Institut, Erasmus University, Rotterdam.
[153] Vaughan, R.C., (1989) A new iterative method in Waring’s problem, Acta Math.162, 1-71. · Zbl 0665.10033
[154] Vershik, A.M., (1987) The asymptotic distribution of factorizations of natural numbers into prime divisors, Soviet Math. Dokl.34, 57-61. · Zbl 0625.10033
[155] Vinogradov, I.M., (1926) On a bound for the least nth power non-residue (Russian), Izv. Akad. Nauk SSSR20, 47-58; English transl.: Trans. Amer. Math. Soc.29 (1927), 218-226. · JFM 53.0124.04
[156] Wang, Y., (1964) Estimation and application of a character sum (Chinese), Shuzue Jinzhan7, 78-83. · Zbl 0501.10044
[157] Warlimont, R., (1990) Sieving by large prime factors, Monatshefte Math.109, 247-256. · Zbl 0713.11068
[158] (1991) Arithmetical semigroups, II: Sieving by large and small prime elements. Sets of multiples, Manuscripta Math.71, 197-221. · Zbl 0735.11046
[159] Wheeler, F., (1990) Two differential-difference equations arising in number theory, Trans. Amer. Math. Soc.318, 491-523. · Zbl 0697.10035
[160] Wolke, D., (1971) Polynomial values with small prime divisors, Acta Arith.19, 327-333. · Zbl 0233.10033
[161] (1973) Über die mittlere Verteilung der Werte zahlentheoretischer Funktionen auf Restklassen. I, Math. Ann.202, 1-205. · Zbl 0238.10031
[162] Wooley, T., (1992) Large improvements in Waring’s problem, Annals Math.(2) 135, no 1, 135-164. · Zbl 0754.11026
[163] Xuan, T.Z., (1988) On a problem of Erdös and Ivić, Publ. Inst. Math. (Beograd) (N. S.) 43 (57), 9-15. · Zbl 0648.10027
[164] (1989a) On sums involving reciprocals of certain large additive functions. I, Publ. Inst. Math. (Beograd) (N. S.) 45 (59), 41-55. · Zbl 0682.10030
[165] (1989b) On sums involving reciprocals of certain large additive functions. II, Publ. Inst. Math. (Beograd) (N. S.) 46 (60), 25-32. · Zbl 0698.10033
[166] (1990) The average of dk(n) over integers free of large prime factors, Acta Arith.55, 249-260. · Zbl 0657.10046
[167] (1991) The average of the divisor function over integers without large prime factors, Chinese Ann. of Math. Ser. A 12, 28-33. · Zbl 0751.11044
[168] (1993) On the asymptotic behavior of the DicZanan-de Bruijn function, Math. Ann.297, 519-533. · Zbl 0786.11058
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.