×

Local fractional Laplace variational iteration method for fractal vehicular traffic flow. (English) Zbl 1348.35295

Summary: We discuss the line partial differential equations arising in fractal vehicular traffic flow. The nondifferentiable approximate solutions are obtained by using the local fractional Laplace variational iteration method, which is the coupling method of local fractional variational iteration method and Laplace transform. The obtained results show the efficiency and accuracy of implements of the present method.

MSC:

35R11 Fractional partial differential equations
65M99 Numerical methods for partial differential equations, initial value and time-dependent initial-boundary value problems
90B20 Traffic problems in operations research

References:

[1] V. E. Tarasov, “Wave equation for fractal solid string,” Modern Physics Letters B, vol. 19, no. 15, pp. 721-728, 2005. · Zbl 1078.74021 · doi:10.1142/S0217984905008712
[2] S. Momani and Z. Odibat, “Analytical approach to linear fractional partial differential equations arising in fluid mechanics,” Physics Letters A: General, Atomic and Solid State Physics, vol. 355, no. 4-5, pp. 271-279, 2006. · Zbl 1378.76084 · doi:10.1016/j.physleta.2006.02.048
[3] S. Momani and Z. Odibat, “Analytical solution of a time-fractional Navier-Stokes equation by Adomian decomposition method,” Applied Mathematics and Computation, vol. 177, no. 2, pp. 488-494, 2006. · Zbl 1096.65131 · doi:10.1016/j.amc.2005.11.025
[4] Y. Z. Povstenko, “Fractional heat conduction equation and associated thermal stress,” Journal of Thermal Stresses, vol. 28, no. 1, pp. 83-102, 2005. · doi:10.1080/014957390523741
[5] L. Vázquez, J. J. Trujillo, and M. P. Velasco, “Fractional heat equation and the second law of thermodynamics,” Fractional Calculus and Applied Analysis, vol. 14, no. 3, pp. 334-342, 2011. · Zbl 1273.80002 · doi:10.2478/s13540-011-0021-9
[6] E. Lutz, “Fractional transport equations for Lévy stable processes,” Physical Review Letters, vol. 86, no. 11, pp. 2208-2211, 2001. · doi:10.1103/PhysRevLett.86.2208
[7] A. Kadem, Y. Luchko, and D. Baleanu, “Spectral method for solution of the fractional transport equation,” Reports on Mathematical Physics, vol. 66, no. 1, pp. 103-115, 2010. · Zbl 1237.82041 · doi:10.1016/S0034-4877(10)80026-6
[8] N. Laskin, “Fractional Schrödinger equation,” Physical Review E. Statistical, Nonlinear, and Soft Matter Physics, vol. 66, no. 5, Article ID 056108, 7 pages, 2002. · doi:10.1103/PhysRevE.66.056108
[9] S. I. Muslih, O. P. Agrawal, and D. Baleanu, “A fractional Schrödinger equation and its solution,” International Journal of Theoretical Physics, vol. 49, no. 8, pp. 1746-1752, 2010. · Zbl 1197.81126 · doi:10.1007/s10773-010-0354-x
[10] D. Baleanu, K. Diethelm, E. Scalas, and J. J. Trujillo, Fractional Calculus Models and Numerical Methods, vol. 3 of Complexity, Nonlinearity and Chaos, World Scientific, Boston, Mass, USA, 2012. · Zbl 1248.26011
[11] H. Jafari and S. Seifi, “Homotopy analysis method for solving linear and nonlinear fractional diffusion-wave equation,” Communications in Nonlinear Science and Numerical Simulation, vol. 14, no. 5, pp. 2006-2012, 2009. · Zbl 1221.65278 · doi:10.1016/j.cnsns.2008.05.008
[12] H. Jafari, H. Tajadodi, N. Kadkhoda, and D. Baleanu, “Fractional subequation method for Cahn-Hilliard and Klein-Gordon equations,” Abstract and Applied Analysis, vol. 2013, Article ID 587179, 5 pages, 2013. · Zbl 1308.35322 · doi:10.1155/2013/587179
[13] J. Hristov, “Heat-balance integral to fractional (half-time) heat diffusion sub-model,” Thermal Science, vol. 14, no. 2, pp. 291-316, 2010. · doi:10.2298/TSCI1002291H
[14] J. Hristov, “Transient flow of a generalized second grade fluid due to a constant surface shear stress: an approximate integral-balance solution,” International Review of Chemical Engineering, vol. 3, no. 6, pp. 802-809, 2011.
[15] A. H. Bhrawy and M. A. Alghamdi, “A shifted Jacobi-Gauss-Lobatto collocation method for solving nonlinear fractional Langevin equation involving two fractional orders in different intervals,” Boundary Value Problems, vol. 2012, article 62, 2012. · Zbl 1280.65079 · doi:10.1186/1687-2770-2012-62
[16] A. H. Bhrawy and M. M. Al-Shomrani, “A shifted Legendre spectral method for fractional-order multi-point boundary value problems,” Advances in Difference Equations, vol. 2012, article 8, 2012. · Zbl 1280.65074 · doi:10.1186/1687-1847-2012-8
[17] A. H. Bhrawy and D. Baleanu, “A spectral Legendre-Gauss-Lobatto collocation method for a space-fractional advection diffusion equations with variable coefficients,” Reports on Mathematical Physics, vol. 72, no. 2, pp. 219-233, 2013. · Zbl 1292.65109 · doi:10.1016/S0034-4877(14)60015-X
[18] A. Atangana and D. Baleanu, “Numerical solution of a kind of fractional parabolic equations via two difference schemes,” Abstract and Applied Analysis, vol. 2013, Article ID 828764, 8 pages, 2013. · Zbl 1275.65066 · doi:10.1155/2013/828764
[19] X.-J. Yang, Advanced Local Fractional Calculus and Its Applications, World Science, New York, NY, USA, 2012.
[20] X.-J. Yang, H. M. Srivastava, J.-H. He, and D. Baleanu, “Cantor-type cylindrical-coordinate method for differential equations with local fractional derivatives,” Physics Letters A, vol. 377, no. 28-30, pp. 1696-1700, 2013. · Zbl 1298.35243 · doi:10.1016/j.physleta.2013.04.012
[21] Y. Zhao, D. Baleanu, C. Cattani, D.-F. Cheng, and X.-J. Yang, “Maxwell’s equations on Cantor sets: a local fractional approach,” Advances in High Energy Physics, vol. 2013, Article ID 686371, 6 pages, 2013. · Zbl 1328.82035 · doi:10.1155/2013/686371
[22] X.-J. Yang and D. Baleanu, “Fractal heat conduction problem solved by local fractional variation iteration method,” Thermal Science, vol. 17, no. 2, pp. 625-628, 2013. · doi:10.2298/TSCI121124216Y
[23] C. F. Liu, S. S. Kong, and S. J. Yuan, “Reconstructive schemes for variational iteration method within Yang-Laplace transform with application to fractal heat conduction problem,” Thermal Science, vol. 17, no. 3, pp. 715-721, 2013.
[24] X. J. Yang, D. Baleanu, and J. T. Machado, “Application of the local fractional Fourier series to fractal signals,” in Discontinuity and Complexity in Nonlinear Physical Systems, pp. 63-89, Springer, 2014. · Zbl 1319.42005
[25] K. Liu, R.-J. Hu, C. Cattani, G.-N. Xie, X.-J. Yang, and Y. Zhao, “Local fractional Z-transforms with applications to signals on cantor sets,” Abstract and Applied Analysis, vol. 2014, Article ID 638648, 6 pages, 2014. · doi:10.1155/2014/638648
[26] G. Yi, “Local fractional Z transform in fractal space,” Advances in Digital Multimedia, vol. 1, no. 2, pp. 96-102, 2012.
[27] X.-J. Yang, D. Baleanu, H. M. Srivastava, and J. A. Tenreiro Machado, “On local fractional continuous wavelet transform,” Abstract and Applied Analysis, vol. 2013, Article ID 725416, 5 pages, 2013. · doi:10.1155/2013/725416
[28] X.-J. Yang, D. Baleanu, and J. A. Tenreiro Machado, “Systems of Navier-Stokes equations on Cantor sets,” Mathematical Problems in Engineering, vol. 2013, Article ID 769724, 8 pages, 2013. · Zbl 1299.76047 · doi:10.1155/2013/769724
[29] X.-J. Yang, D. Baleanu, and J. A. Tenreiro Machado, “Mathematical aspects of Heisenberg uncertainty principle within local fractional Fourier analysis,” Boundary Value Problems, vol. 2013, article 131, 2013. · Zbl 1296.35154 · doi:10.1186/1687-2770-2013-131
[30] C.-Y. Long, Y. Zhao, and H. Jafari, “Mathematical models arising in the fractal forest gap via local fractional calculus,” Abstract and Applied Analysis, vol. 2014, Article ID 782393, 6 pages, 2014. · doi:10.1155/2014/782393
[31] L.-F. Wang, X.-J. Yang, D. Baleanu, C. Cattani, and Y. Zhao, “Fractal dynamical model of vehicular traffic flow within the local fractional conservation laws,” Abstract and Applied Analysis, vol. 2014, Article ID 635760, 5 pages, 2014. · doi:10.1155/2014/635760
[32] J.-H. He and F.-J. Liu, “Local fractional variational iteration method for fractal heat transfer in silk cocoon hierarchy,” Nonlinear Science Letters A, vol. 4, no. 1, pp. 15-20, 2013.
[33] A. M. Yang, J. Li, H. M. Srivastava, G. N. Xie, and X. J. Yang, “The local fractional Laplace variational iteration method for solving linear partial differential equations with local fractional derivatives,” Discrete Dynamics in Nature and Society, vol. 2014, Article ID 365981, 2014. · doi:10.1155/2014/365981
[34] Y. Z. Zhang, A. M. Yang, and Y. Long, “Initial boundary value problem for fractal heat equation in the semi-infinite region by Yang-Laplace transform,” Thermal Science, 2013.
[35] C.-G. Zhao, A.-M. Yang, H. Jafari, and A. Haghbin, “The Yang-Laplace transform for solving the IVPs with local fractional derivative,” Abstract and Applied Analysis, vol. 2014, Article ID 386459, 5 pages, 2014. · doi:10.1155/2014/386459
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.