×

Application of the local fractional Fourier series to fractal signals. (English) Zbl 1319.42005

Machado, José A. Tenreiro (ed.) et al., Discontinuity and complexity in nonlinear physical systems. Selected papers based on the presentations at the 4th international conference on nonlinear science and complexity, NSC, Budapest, Hungary, August 6–11, 2012. Cham: Springer (ISBN 978-3-319-01410-4/hbk; 978-3-319-01411-1/ebook). Nonlinear Systems and Complexity 6, 63-89 (2014).
Summary: A local fractional Fourier series is a generalized Fourier series in fractal spaces. The local fractional calculus is one of the useful tools to process the local fractional continuously non-differentiable functions (fractal functions). Based on the local fractional derivative and integration, the present chapter is devoted to the theory and applications of local fractional Fourier analysis in generalized Hilbert spaces. We recall the local fractional Fourier series, the Fourier transform, the generalized Fourier transform, the discrete Fourier transform and fast Fourier transform in fractal spaces.
For the entire collection see [Zbl 1280.37003].

MSC:

42A99 Harmonic analysis in one variable
42A38 Fourier and Fourier-Stieltjes transforms and other transforms of Fourier type
26A33 Fractional derivatives and integrals
26A36 Antidifferentiation
28A80 Fractals
Full Text: DOI

References:

[1] Wiener, N., The Fourier integral and certain of its applications (1933), Cambridge: Cambridge University Press, Cambridge · JFM 59.0416.01
[2] KÖrener, TW, Fourier analysis (1988), Cambridge: Cambridge University Press, Cambridge · Zbl 0649.42001
[3] Folland, B., Fourier analysis and its application (1992), California: Wadsworth, California · Zbl 0786.42001
[4] Howell, KB, Principles of Fourier analysis (2001), New York: Chapman & Hall/CRC, New York · Zbl 1022.42001 · doi:10.1201/9781420036909
[5] Stein, M.; Weiss, G., Introduction to Fourier analysis on Euclidean spaces (1971), Princeton: Princeton University Press, Princeton · Zbl 0232.42007
[6] Rudin, W., Fourier analysis on groups (1962), New York: Wiley, New York · Zbl 0107.09603
[7] Loomis, L., Abstract harmonic analysis (1953), New York: Van Nostrand, New York · Zbl 0052.11701
[8] Katznelson, Y., An introduction to harmonic analysis (1968), New York: Wiley, New York · Zbl 0169.17902
[9] Namias, V., The fractional order Fourier transform and its application to quantum mechanics, IMA J Appl Math, 25, 241-265 (1980) · Zbl 0434.42014 · doi:10.1093/imamat/25.3.241
[10] Mcbride, AC; Kerr, FH, On Namias’s fractional Fourier transforms, IMA J Appl Math, 39, 2, 159-175 (1987) · Zbl 0644.44005 · doi:10.1093/imamat/39.2.159
[11] Bailey, DH; Swarztrauber, PN, The fractional Fourier transform and applications, SIAM Rev, 33, 389-404 (1991) · Zbl 0734.65104 · doi:10.1137/1033097
[12] Lohmann, AW, Image rotation, Wigner rotation and the fractional Fourier transform, J Opt Soc Am A, 10, 2181-2186 (1993) · doi:10.1364/JOSAA.10.002181
[13] Almeida, LB, The fractional Fourier transform and time-frequency representations, IEEE Trans Signal Process, 42, 11, 3084-3091 (1994) · doi:10.1109/78.330368
[14] Candan, C.; Kutay, MA; Ozaktas, HM, The discrete fractional Fourier transform, IEEE Trans Signal Process, 48, 5, 1329-1337 (2000) · Zbl 1011.65102 · doi:10.1109/78.839980
[15] Pei, S-C; Ding, J-J, Relations between fractional operations and time-frequency distributions, and their applications, IEEE Trans Signal Process, 49, 8, 1638-1655 (2001) · Zbl 1369.94258 · doi:10.1109/78.934134
[16] Saxena, R.; Singh, K., Fractional Fourier transform: a novel tool for signal processing, J Indian Inst Sci, 85, 11-26 (2005)
[17] Tao, R.; Deng, B.; Zhang, W-Q; Wang, Y., Sampling and sampling rate conversion of band limited signals in the fractional Fourier transform domain, IEEE Trans Signal Process, 56, 1, 158-171 (2008) · Zbl 1390.94660 · doi:10.1109/TSP.2007.901666
[18] Bhandari, A.; Marziliano, P., Sampling and reconstruction of sparse signals in fractional Fourier domain, IEEE Signal Process Lett, 17, 3, 221-224 (2010) · doi:10.1109/LSP.2009.2035242
[19] Kolwankar, KM; Gangal, AD, Fractional differentiability of nowhere differentiable functions and dimensions, Chaos, 6, 4, 505-513 (1996) · Zbl 1055.26504 · doi:10.1063/1.166197
[20] Parvate, A.; Gangal, AD, Calculus on fractal subsets of real line - I: formulation, Fractals, 17, 1, 53-81 (2009) · Zbl 1173.28005 · doi:10.1142/S0218348X09004181
[21] Adda, FB; Cresson, J., About non-differentiable functions, J Math Anal Appl, 263, 721-737 (2001) · Zbl 0995.26006 · doi:10.1006/jmaa.2001.7656
[22] Carpinteri, A.; Chiaia, B.; Cornetti, P., Static-kinematic duality and the principle of virtual work in the mechanics of fractal media, Comput Methods Appl Mech Eng, 191, 3-19 (2001) · Zbl 0991.74013 · doi:10.1016/S0045-7825(01)00241-9
[23] Carpinteri, A.; Cornetti, P., A fractional calculus approach to the description of stress and strain localization in fractal media, Chaos Solitons Fractals, 13, 85-94 (2002) · Zbl 1030.74045 · doi:10.1016/S0960-0779(00)00238-1
[24] Babakhani, A.; Daftardar-Gejji, V., On calculus of local fractional derivatives, J Math Anal Appl, 270, 1, 66-79 (2002) · Zbl 1005.26002 · doi:10.1016/S0022-247X(02)00048-3
[25] Chen, Y.; Yan, Y.; Zhang, K., On the local fractional derivative, J Math Anal Appl, 362, 17-33 (2010) · Zbl 1196.26011 · doi:10.1016/j.jmaa.2009.08.014
[26] Chen, W., Time-space fabric underlying anomalous diffusion, Chaos Solitons Fractals, 28, 923-929 (2006) · Zbl 1098.60078 · doi:10.1016/j.chaos.2005.08.199
[27] Chen, W.; Sun, HG; Zhang, XD; Koro, D., Anomalous diffusion modeling by fractal and fractional derivatives, Comput Math Appl, 59, 1754-1758 (2010) · Zbl 1189.35355 · doi:10.1016/j.camwa.2009.08.020
[28] Chen, W.; Zhang, XD; Korosak, D., Investigation on fractional and fractal derivative relaxation-oscillation models, Int J Nonlinear Sci Numer Simulat, 11, 3-9 (2010)
[29] Jumarie, G., On the representation of fractional Brownian motion as an integral with respect to (dt)^a, Appl Math Lett, 18, 739-748 (2005) · Zbl 1082.60029 · doi:10.1016/j.aml.2004.05.014
[30] Jumarie, G., Lagrange characteristic method for solving a class of nonlinear partial differential equations of fractional order, Appl Math Lett, 19, 873-880 (2006) · Zbl 1116.35046 · doi:10.1016/j.aml.2005.10.016
[31] He, JH, A new fractal derivation, Therm Sci, 15, S145-S147 (2011)
[32] Fan, J.; He, JH, Fractal derivative model for air permeability in hierarchic porous media, Abstr Appl Anal, 2012, 354701 (2012) · Zbl 1255.76131
[33] Li, ZB; Zhu, WH; He, JH, Exact solutions of time-fractional heat conduction equation by the fractional complex transform, Therm Sci, 16, 2, 335-338 (2012) · doi:10.2298/TSCI110503069L
[34] He, JH; Elagan, SK; Li, ZB, Geometrical explanation of the fractional complex transform and derivative chain rule for fractional calculus, Phys Lett A, 376, 257-259 (2012) · Zbl 1255.26002 · doi:10.1016/j.physleta.2011.11.030
[35] Yang XJ (2009) Research on fractal mathematics and some applications in mechanics. M.S. thesis, China University of Mining and Technology
[36] Yang, XJ, Local fractional integral transforms, Prog Nonlinear Sci, 4, 1-225 (2011)
[37] Yang, XJ, Local fractional functional analysis and its applications (2011), Hong Kong: Asian Academic publisher, Hong Kong
[38] Yang, XJ, Advanced local fractional calculus and its applications (2012), New York: World Science Publisher, New York
[39] Hu, MS; Baleanu, D.; Yang, XJ, One-phase problems for discontinuous heat transfer in fractal media, Math Probl Eng, 2013, 358473 (2013) · Zbl 1296.80006
[40] Yang, XJ; Baleanu, D.; Zhong, WP, Approximate solutions for diffusion equations on Cantor time-space, Proc Rom Acad A, 14, 2, 127-133 (2013)
[41] Zhong, WP; Yang, XJ; Gao, F., A Cauchy problem for some local fractional abstract differential equation with fractal conditions, J Appl Funct Anal, 8, 1, 92-99 (2013) · Zbl 1279.26022
[42] Yang, XJ; Baleanu, D., Fractal heat conduction problem solved by local fractional variation iteration method, Therm Sci, 17, 2, 625-628 (2013)
[43] Liao, MK; Yang, XJ; Yan, Q.; Anastassiou, GA; Duman, O., A new viewpoint to Fourier analysis in fractal space, Advances in applied mathematics and approximation theory, chapter 26, 399-411 (2013), New York: Springer, New York
[44] Hu, MS; Agarwal, RP; Yang, XJ, Local fractional Fourier series with application to wave equation in fractal vibrating string, Abstr Appl Anal, 2012, 567401 (2012) · Zbl 1257.35193
[45] He, JH, Asymptotic methods for solitary solutions and compactons, Abstr Appl Anal, 2012, 916793 (2012) · Zbl 1257.35158
[46] Guo, Y., Local fractional Z transform in fractal space, Adv Digit Multimedia, 1, 2, 96-102 (2012)
[47] Yang, XJ; Liao, MK; Chen, JW, A novel approach to processing fractal signals using the Yang-Fourier transforms, Procedia Eng, 29, 2950-2954 (2012) · doi:10.1016/j.proeng.2012.01.420
[48] Zhong, WP; Gao, F.; Shen, XM, Applications of Yang-Fourier transform to local fractional equations with local fractional derivative and local fractional integral, Adv Mater Res, 461, 306-310 (2012) · doi:10.4028/www.scientific.net/AMR.461.306
[49] Yang, XJ, A generalized model for Yang-Fourier transforms in fractal space, Adv Intell Transport Syst, 1, 4, 80-85 (2012)
[50] Yang, XJ, The discrete Yang-Fourier transforms in fractal space, Adv Electr Eng Syst, 1, 2, 78-81 (2012)
[51] Yang, XJ, Fast Yang-Fourier transforms in fractal space, Adv Intell Transport Syst, 1, 1, 25-28 (2012)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.