×

Cantor-type cylindrical-coordinate method for differential equations with local fractional derivatives. (English) Zbl 1298.35243

Summary: In this Letter, we propose to use the Cantor-type cylindrical-coordinate method in order to investigate a family of local fractional differential operators on Cantor sets. Some testing examples are given to illustrate the capability of the proposed method for the heat-conduction equation on a Cantor set and the damped wave equation in fractal strings. It is seen to be a powerful tool to convert differential equations on Cantor sets from Cantorian-coordinate systems to Cantor-type cylindrical-coordinate systems.

MSC:

35R11 Fractional partial differential equations
26A33 Fractional derivatives and integrals
Full Text: DOI

References:

[1] Boothby, W. M., An Introduction to Differential Manifolds and Riemannian Geometry (2002), Academic Press: Academic Press New York
[2] Ganji, Z. Z.; Ganji, D. D.; Ganji, A. D.; Rostamian, M., Numer. Methods Partial Differential Equations, 26, 117 (2010) · Zbl 1423.35396
[3] Momani, S.; Odibat, Z., Appl. Math. Comput., 177, 488 (2006) · Zbl 1096.65131
[4] Yang, X.-J., Advanced Local Fractional Calculus and Its Applications (2012), World Science Publisher: World Science Publisher New York
[5] Yang, X.-J., Progr. Nonlinear Sci., 4, 1 (2011)
[6] Yang, X.-J., Local Fractional Functional Analysis and Its Applications (2011), Asian Academic Publisher: Asian Academic Publisher Hong Kong
[7] Yang, X.-J.; Baleanu, D., Therm. Sci. (2012), in press
[8] Hu, M.-S.; Baleanu, D.; Yang, X.-J., Math. Probl. Engrg., 2013, 358473 (2013) · Zbl 1296.80006
[9] Hu, M.-S.; Agarwal, R. P.; Yang, X.-J., Abstr. Appl. Anal., 2012, 567401 (2012) · Zbl 1257.35193
[10] Anastassiou, G. A.; Duman, O., Advances in Applied Mathematics and Approximation Theory (2013), Springer: Springer New York · Zbl 1264.00039
[11] Zhong, W.-P.; Gao, F.; Shen, X.-M., Adv. Mat. Res., 461, 306 (2012)
[12] Kolwankar, K. M.; Gangal, A. D., Phys. Rev. Lett., 80, 214 (1998) · Zbl 0945.82005
[13] Baleanu, D.; Machado, J. A.T.; Luo, A. C.J., Fractional Dynamics and Control (2011), Springer: Springer New York
[14] Machado, J. A.T.; Kiryakova, V.; Mainardi, F., Commun. Nonlinear Sci. Numer. Simul., 16, 1140 (2011) · Zbl 1221.26002
[15] Chen, Y.; Yan, Y.; Zhang, K.-W., J. Math. Anal. Appl., 362, 17 (2010) · Zbl 1196.26011
[16] Chen, W., Chaos Solitons Fractals, 28, 923 (2006) · Zbl 1098.60078
[17] Ben Adda, F.; Cresson, J., J. Math. Anal. Appl., 263, 721 (2001)
[18] Jumarie, G., Comput. Math. Appl., 51, 1367 (2006) · Zbl 1137.65001
[19] Carpinteri, A.; Cornetti, P.; Kolwankar, K. M., Chaos Solitons Fractals, 21, 623 (2004) · Zbl 1049.74790
[20] Carpinteri, A.; Chiaia, B.; Cornetti, P., Comput. Methods Appl. Mech. Engrg., 191, 3 (2001) · Zbl 0991.74013
[21] Carpinteri, A.; Chiaia, B.; Cornetti, P., Engrg. Fract. Mech., 70, 2321 (2003)
[22] Babakhani, A.; Daftardar-Gejji, V., J. Math. Anal. Appl., 270, 66 (2002) · Zbl 1005.26002
[23] Kilbas, A. A.; Srivastava, H. M.; Trujillo, J. J., Theory and Applications of Fractional Differential Equations (2006), Elsevier: Elsevier Amsterdam, New York · Zbl 1092.45003
[24] Baleanu, D.; Diethelm, K.; Scalas, E.; Trujillo, J. J., Fractional Calculus: Models and Numerical Methods, Series on Complexity, Nonlinearity and Chaos (2012), World Scientific: World Scientific Boston · Zbl 1248.26011
[25] Podlubny, I., Fractional Differential Equations (1999), Academic Press: Academic Press New York · Zbl 0918.34010
[26] He, J.-H.; Elagan, S. K.; Li, Z.-B., Phys. Lett. A, 376, 257 (2012) · Zbl 1255.26002
[27] Li, Z.-B.; He, J.-H., Math. Comput. Appl., 15, 970 (2010) · Zbl 1215.35164
[28] He, J.-H., Abstr. Appl. Anal., 2012, 916793 (2012) · Zbl 1257.35158
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.