×

Isoperimetry and stability properties of balls with respect to nonlocal energies. (English) Zbl 1312.49051

Summary: We obtain a sharp quantitative isoperimetric inequality for nonlocal \(s\)-perimeters, uniform with respect to \(s\) bounded away from 0. This allows us to address local and global minimality properties of balls with respect to the volume-constrained minimization of a free energy consisting of a nonlocal \(s\)-perimeter plus a non-local repulsive interaction term. In the particular case \(s=1\), the \(s\)-perimeter coincides with the classical perimeter, and our results improve the ones of H. Knüpfer and C. B. Muratov [Commun. Pure Appl. Math. 66, No. 7, 1129–1162 (2013; Zbl 1269.49087); Commun. Pure Appl. Math. 67, No. 12, 1974–1994 (2014; Zbl 1302.49064)] concerning minimality of balls of small volume in isoperimetric problems with a competition between perimeter and a nonlocal potential term. More precisely, their result is extended to its maximal range of validity concerning the type of nonlocal potentials considered, and is also generalized to the case where local perimeters are replaced by their nonlocal counterparts.

MSC:

49Q10 Optimization of shapes other than minimal surfaces
49Q20 Variational problems in a geometric measure-theoretic setting

References:

[1] Acerbi E., Fusco N., Morini M.: Minimality via second variation for a nonlocal isoperimetric problem. Comm. Math. Phys. 322(2), 515-557 (2013) · Zbl 1270.49043 · doi:10.1007/s00220-013-1733-y
[2] Almgren, F. J. Jr.; Existence and regularity almost everywhere of solutions to elliptic variational problems with constraints. Mem. Am. Math. Soc. 4(165) (1976) · Zbl 0327.49043
[3] Ambrosio L., De Philippis G., Martinazzi L.: Gamma-convergence of nonlocal perimeter functionals. Manuscripta Math. 134, 377-403 (2011) · Zbl 1207.49051 · doi:10.1007/s00229-010-0399-4
[4] Barrios Barrera, B., Figalli, A., Valdinoci, E.: Bootstrap regularity for integro-differential operators, and its application to nonlocal minimal surfaces. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (to appear, 2014) · Zbl 1316.35061
[5] Bohr N., Wheeler J.A.: The mechanism of nuclear fission. Phys. Rev. 56, 426-450 (1939) · JFM 65.1535.05 · doi:10.1103/PhysRev.56.426
[6] Bonacini, M., Cristoferi, R.: Local and global minimality results for a nonlocal isoperimetric problem on RN. Preprint (2013) · Zbl 1301.49114
[7] Caffarelli L., Roquejoffre J.M., Savin O.: Nonlocal minimal surfaces. Comm. Pure Appl. Math. 63(9), 1111-1144 (2010) · Zbl 1248.53009
[8] Caffarelli L., L. , Valdinoci E.: Uniform estimates and limiting arguments for nonlocal minimal surfaces. Calc. Var. Partial Differ. Equ. 41(1-2), 203-240 (2011) · Zbl 1357.49143
[9] Cagnetti F., Mora M.G., Morini M.: A second order minimality condition for the Mumford-Shah functional. Calc. Var. Partial Differ. Equ. 33, 37-74 (2008) · Zbl 1191.49018 · doi:10.1007/s00526-007-0152-3
[10] Caputo M.C., Guillen N.: Regularity for non-local almost minimal boundaries and applications. Preprint (2011)
[11] Cicalese M., M. , Leonardi G.P.: A Selection principle for the sharp quantitative isoperimetric inequality. Arch. Ration. Mech. Anal. 206(2), 617-643 (2012) · Zbl 1257.49045
[12] Davila, J., del Pino, M., Wei, J.: Nonlocal Minimal Lawson Cones. Preprint (2013) · Zbl 1228.46030
[13] Dipierro S., Figalli A., Palatucci G., Valdinoci E.: Asymptotics of the s-perimeter as \[{s\to 0}\] s→0 . Discrete Contin. Dyn. Syst. 33(7), 2777-2790 (2013) · Zbl 1275.49083 · doi:10.3934/dcds.2013.33.2777
[14] Feenberg E.: On the shape and stability of heavy nuclei. Phys. Rev. 55, 504-505 (1939) · Zbl 0021.08901 · doi:10.1103/PhysRev.55.504.2
[15] Figalli A., Maggi F.: On the shape of liquid drops and crystals in the small mass regime. Arch. Ration. Mech. Anal. 201(1), 143-207 (2011) · Zbl 1279.76005 · doi:10.1007/s00205-010-0383-x
[16] Figalli A., Maggi F.: On the isoperimetric problem for radial log-convex densities. Calc. Var. Partial Differ. Equ. 48(3-4), 447-489 (2013) · Zbl 1307.49046 · doi:10.1007/s00526-012-0557-5
[17] Figalli A., Maggi F., Pratelli A.: A mass transportation approach to quantitative isoperimetric inequalities. Invent. Math. 182(1), 167-211 (2010) · Zbl 1196.49033 · doi:10.1007/s00222-010-0261-z
[18] Figalli, A., Valdinoci, E.: Regularity and Bernstein-type results for nonlocal minimal surfaces. Preprint (2013) · Zbl 1380.49060
[19] Frank R.L., Lieb E.H., Seiringer R.: Hardy-Lieb-Thirring inequalities for fractional Schrödinger operators. J. Am. Math. Soc. 21, 925-950 (2008) · Zbl 1202.35146 · doi:10.1090/S0894-0347-07-00582-6
[20] Frank R.L., Seiringer R.: Non-linear ground state representations and sharp Hardy inequalities. J. Funct. Anal. 255, 3407-3430 (2008) · Zbl 1189.26031 · doi:10.1016/j.jfa.2008.05.015
[21] Frenkel J.: On the splitting of heavy nuclei by slow neutrons. Phys. Rev. 55, 987 (1939) · Zbl 0021.28101 · doi:10.1103/PhysRev.55.987
[22] Fuglede B.: Stability in the isoperimetric problem for convex or nearly spherical domains in \[{\mathbb{R}^n}Rn\] . Trans. Am. Math. Soc. 314, 619-638 (1989) · Zbl 0679.52007
[23] Fusco N., Maggi F., Pratelli A.: The sharp quantitative isoperimetric inequality. Ann. Math. (2) 168(3), 941-980 (2008) · Zbl 1187.52009 · doi:10.4007/annals.2008.168.941
[24] Fusco N., Millot V., Morini M.: A quantitative isoperimetric inequality for fractional perimeters. J. Funct. Anal. 26, 697-715 (2011) · Zbl 1228.46030 · doi:10.1016/j.jfa.2011.02.012
[25] Knuepfer H., Muratov C.B.: On an isoperimetric problem with a competing nonlocal term I: the planar case. Comm. Pure Appl. Math. 66(7), 1129-1162 (2013) · Zbl 1269.49087 · doi:10.1002/cpa.21451
[26] Knuepfer, H., Muratov, C.B.: On an isoperimetric problem with a competing non-local term. II. The general case. Comm. Pure Appl. Math. (to appear, 2014)
[27] Giusti, E.: Minimal surfaces and functions of bounded variation. In: Monographs in Mathematics, vol. 80. Birkhäuser, Basel (1984) · Zbl 0545.49018
[28] Julin, V.: Isoperimetric problem with a Coulombic repulsive term. Indiana Univ. Math. J. (to appear, 2014) · Zbl 1311.49110
[29] Leoni, G.: A First Course in Sobolev Spaces. In: Graduate Studies in Mathematics, vol. 105 · Zbl 1180.46001
[30] Lu J., Otto F.: Nonexistence of minimizer for Thomas-Fermi-Dirac-von Weizsäcker model. Comm. Pure Appl. Math. 67(10), 1605-1617 (2014) · Zbl 1301.49002 · doi:10.1002/cpa.21477
[31] Maggi, F.: Sets of finite perimeter and geometric variational problems. In: An Introduction to Geometric Measure Theory. Cambridge Studies in Adavanced Mathematics, vol. 135. Cambridge University Press, Cambridge (2012) · Zbl 1255.49074
[32] Müller, C.: Spherical harmonics. In: Lecture Notes in Mathematics, vol. 17. Springer, Berlin (1966) · Zbl 0138.05101
[33] Rigot, S.: Ensembles quasi-minimaux avec contrainte de volume et rectifiabilité uniforme. Mém. Soc. Math. Fr. (N.S.) 82 (2000) · Zbl 0983.49025
[34] Samko, S.G.: Hypersingular integrals and their applications. In: Analytical Methods and Special Functions, vol. 5. Taylor & Francis, Ltd., London (2002) · Zbl 0998.42010
[35] Savin O., Valdinoci E.: Regularity of nonlocal minimal cones in dimension 2. Calc. Var. Partial Differ. Equ. 48(1-2), 33-39 (2013) · Zbl 1275.35065 · doi:10.1007/s00526-012-0539-7
[36] Simon, L.M.: Lectures on geometric measure theory. In: Proceedings of the Centre for Mathematical Analysis, Australian National University, vol. 3, Canberra (1983) · Zbl 0546.49019
[37] Visintin A.: Generalized coarea formula and fractal sets. Japan J. Indust. Appl. Math. 8, 175-201 (1991) · Zbl 0736.49030 · doi:10.1007/BF03167679
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.