×

Nonlinear ground state representations and sharp Hardy inequalities. (English) Zbl 1189.26031

The authors determine the optimal constant \(\mathcal C_{N,s,p}\) in the fractional Hardy inequality
\[ \iint_{\mathbb R^N\times\mathbb R^N} \frac{|u(x)-u(y)|^p}{|x-y|^{N+ps}}\,dx\,dy \geq{\mathcal C}_{N,s,p} \int_{\mathbb R^N} \frac{|u(x)|^p}{|x|^{ps}}\, dx \tag{1} \]
(\(N\in\mathbb N\), \(0<s<1\)), where \(u\) belongs to the homogeneous Sobolev space \(\dot{W}^s_p(\mathbb R^n)\) in the case \(1\leq p\leq N/s\), or it belongs to \(\dot{W}^s_p(\mathbb R^N\setminus\{0\})\) when \(p>N/s\) (these spaces are defined as completions of \(C^\infty_0(\mathbb R^N)\) or \(C^\infty_0(\mathbb R^N\setminus\{0\})\), with regards to the left-hand side of (1)), respectively. To do so, they develop a nonlinear and non-local version of the ground state representation which even yields a reminder term in inequality (1).
The result enables to extend results from recent papers of J. Bourgain, H. Brézis and P. Mironescu [“Another look at Sobolev spaces”, Optimal control and partial differential equations. In honour of Professor Alain Bensoussan’s 60th birthday. Proceedings of the conference, Paris, France, December 4, 2000. Amsterdam: IOS Press; Tokyo: Ohmsha. 439–455 (2001; Zbl 1103.46310); J. Anal. Math. 87, 77–101 (2002; Zbl 1029.46030)] and of V. Maz’ya and T. Shaposhnikova [J. Math. Pures Appl. (9) 81, No. 9, 877–884 (2002; Zbl 1036.46026)].
Furthermore, from the sharp Hardy inequality the authors deduce the sharp constant in the Sobolev-type embedding of \(\dot{W}^s_p(\mathbb R^n)\) into the Lorentz space \(L_{p^*,p}(\mathbb R^n)\), \(1\leq p<N/s\), where \(p^*:=Np/(N-ps)\), and they characterize all optimizers.
As an appendix, the cases of equality in the rearrangement inequality in fractional Sobolev spaces become characterized.
Reviewer: Petr Gurka (Praha)

MSC:

26D10 Inequalities involving derivatives and differential and integral operators
46E35 Sobolev spaces and other spaces of “smooth” functions, embedding theorems, trace theorems

References:

[1] Adams, R. A.; Fournier, J. J.F., Sobolev Spaces (2003), Academic Press: Academic Press New York · Zbl 0347.46040
[2] Almgren, F. J.; Lieb, E. H., Symmetric decreasing rearrangement is sometimes continuous, J. Amer. Math. Soc., 2, 4, 683-773 (1989) · Zbl 0688.46014
[3] Alvino, A., Sulla diseguaglianza di Sobolev in spazi di Lorentz, Boll. Unione Mat. Ital. Sez. A (5), 14, 148-156 (1977) · Zbl 0352.46020
[4] Barbatis, G.; Filippas, S.; Tertikas, A., A unified approach to improved \(L^p\) Hardy inequalities with best constants, Trans. Amer. Math. Soc., 356, 6, 2169-2196 (2004) · Zbl 1129.26019
[5] Beckner, W., Pitt’s inequality and the uncertainty principle, Proc. Amer. Math. Soc., 123, 1897-1905 (1995) · Zbl 0842.58077
[6] Birman, M. Sh., The spectrum of singular boundary problems, Amer. Math. Soc. Trans. (2), 53, 23-80 (1966) · Zbl 0174.42502
[7] Bourgain, J.; Brezis, H.; Mironescu, P., Another look at Sobolev spaces, (Optimal Control and Partial Differential Equations. A Volume in Honour of A. Bensoussan’s 60th Birthday (2001), IOS Press: IOS Press Amsterdam), 439-455 · Zbl 1103.46310
[8] Bourgain, J.; Brezis, H.; Mironescu, P., Limiting embedding theorems for \(W^{s, p}\) when \(s \uparrow 1\) and applications, J. Anal. Math., 87, 77-101 (2002) · Zbl 1029.46030
[9] Brothers, J. E.; Ziemer, W. P., Minimal rearrangements of Sobolev functions, J. Reine Angew. Math., 384, 153-179 (1988) · Zbl 0633.46030
[10] Davies, E. B., Heat Kernels and Spectral Theory, Cambridge Tracts in Math., vol. 92 (1990), Cambridge Univ. Press: Cambridge Univ. Press Cambridge · Zbl 0699.35006
[11] R.L. Frank, E.H. Lieb, R. Seiringer, Hardy-Lieb-Thirring inequalities for fractional Schrödinger operators, J. Amer. Math. Soc., in press; R.L. Frank, E.H. Lieb, R. Seiringer, Hardy-Lieb-Thirring inequalities for fractional Schrödinger operators, J. Amer. Math. Soc., in press · Zbl 1202.35146
[12] R.L. Frank, B. Simon, T. Weidl, Eigenvalue bounds for perturbations of Schrödinger operators and Jacobi matrices with regular ground states, Comm. Math. Phys., in press; R.L. Frank, B. Simon, T. Weidl, Eigenvalue bounds for perturbations of Schrödinger operators and Jacobi matrices with regular ground states, Comm. Math. Phys., in press · Zbl 1158.35021
[13] Glimm, J.; Jaffe, A., Quantum Physics. A Functional Integral Point of View (1981), Springer: Springer New York · Zbl 0461.46051
[14] Gradshteyn, I. S.; Ryzhik, I. M., Table of Integrals, Series, and Products (2007), Elsevier/Academic Press: Elsevier/Academic Press Amsterdam · Zbl 1208.65001
[15] Herbst, I. W., Spectral theory of the operator \((p^2 + m^2)^{1 / 2} - Z e^2 / r\), Comm. Math. Phys., 53, 3, 285-294 (1977) · Zbl 0375.35047
[16] Hersch, J., Correspondances entre des fonctions propres et valeurs propres de l’équation de Helmholtz dans des domaines de dimensions différentes, C. R. Acad. Sci. Paris, 271, 445-448 (1970) · Zbl 0201.13602
[17] Kovalenko, V. F.; Perel’muter, M. A.; Semenov, Ya. A., Schrödinger operators with \(L_W^{l / 2}(R^l)\)-potentials, J. Math. Phys., 22, 5, 1033-1044 (1981) · Zbl 0463.47027
[18] Lieb, E. H., Existence and uniqueness of the minimizing solution of Choquard’s nonlinear equation, Stud. Appl. Math., 57, 2, 93-105 (1977) · Zbl 0369.35022
[19] Lieb, E. H.; Loss, M., Analysis, Grad. Stud. Math., vol. 14 (2001), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI · Zbl 0966.26002
[20] Luke, Y. L., Mathematical Functions and Their Approximations (1975), Academic Press: Academic Press New York · Zbl 0351.33007
[21] Maz’ya, V., Analytic criteria in the qualitative spectral analysis of the Schrödinger operator, (Gesztesy, F.; etal., Spectral Theory and Mathematical Physics: A Festschrift in Honor of Barry Simon’s 60th Birthday. Spectral Theory and Mathematical Physics: A Festschrift in Honor of Barry Simon’s 60th Birthday, Proc. Sympos. Pure Math., vol. 76 (2007), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI), 257-288 · Zbl 1137.35046
[22] Maz’ya, V.; Shaposhnikova, T., On the Bourgain, Brezis, and Mironescu theorem concerning limiting embeddings of fractional Sobolev spaces, J. Funct. Anal.. J. Funct. Anal., J. Funct. Anal., 201, 1, 298-300 (2003), Erratum
[23] Maz’ya, V.; Shaposhnikova, T., A collection of sharp dilation invariant inequalities for differentiable functions, preprint · Zbl 1161.26302
[24] Maz’ya, V.; Verbitsky, I. E., The form boundedness criterion for the relativistic Schrödinger operator, Ann. Inst. Fourier, 54, 2, 317-339 (2004) · Zbl 1126.35011
[25] O’Neil, R., Convolution operators and \(L(p, q)\) spaces, Duke Math. J., 30, 129-142 (1963) · Zbl 0178.47701
[26] Peetre, J., Espaces d’interpolation et théorème de Soboleff, Ann. Inst. Fourier (Grenoble), 16, 1, 279-317 (1966), (in French) · Zbl 0151.17903
[27] Pinchover, Y., Topics in the theory of positive solutions of second-order elliptic and parabolic partial differential equations, (Gesztesy, F.; etal., Spectral Theory and Mathematical Physics: A Festschrift in Honor of Barry Simon’s 60th Birthday. Spectral Theory and Mathematical Physics: A Festschrift in Honor of Barry Simon’s 60th Birthday, Proc. Sympos. Pure Math., vol. 76 (2007), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI), 329-356 · Zbl 1138.35008
[28] Stein, E. M., Singular Integrals and Differentiability Properties of Functions (1970), Princeton Univ. Press: Princeton Univ. Press Princeton, NJ · Zbl 0207.13501
[29] Tartar, L., Imbedding theorems of Sobolev spaces into Lorentz spaces, Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8), 1, 3, 479-500 (1998) · Zbl 0929.46028
[30] Yafaev, D., Sharp constants in the Hardy-Rellich inequalities, J. Funct. Anal., 168, 1, 121-144 (1999) · Zbl 0981.26016
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.