×

Spectral projections and resolvent bounds for partially elliptic quadratic differential operators. (English) Zbl 1285.47049

The author studies resolvents and spectral projections for quadratic differential operators satisfying a partial ellipticity condition. Exponential-type resolvent bounds are established for these operators, which include Kramers-Fokker-Planck operators with quadratic potentials. For the norms of spectral projections of these operators, the author derives complete asymptotic expansions in dimension one while, for the case of arbitrary dimension, exponential upper bounds and the rate of exponential growth in a generic situation are obtained. Moreover, a complete characterization is given of those operators with orthogonal spectral projections onto the ground state.

MSC:

47F05 General theory of partial differential operators
35H20 Subelliptic equations
35P10 Completeness of eigenfunctions and eigenfunction expansions in context of PDEs
47A10 Spectrum, resolvent
35Q84 Fokker-Planck equations

References:

[1] Boutet de Monvel, L.: Hypoelliptic operators with double characteristics and related pseudo-differential operators. Commun. Pure Appl. Math. 27, 585–639 (1974) · Zbl 0294.35020
[2] Caliceti, E., Graffi, S., Hitrik, M., Sjöstrand, J.: Quadratic PT-symmetric operators with real spectrum and similarity to self-adjoint operators. J. Phys. A Math. Theor. (to appear) · Zbl 1263.81190
[3] Davies, E.B.: Semi-classical states for non-self-adjoint Schrödinger operators. Commun. Math. Phys. 200(1), 35–41 (1999) · Zbl 0921.47060 · doi:10.1007/s002200050521
[4] Davies, E.B., Kuijlaars, A.B.J.: Spectral asymptotics of the non-self-adjoint harmonic oscillator. J. Lond. Math. Soc. 70(2), 420–426 (2004) · Zbl 1073.34093
[5] Dencker, N., Sjöstrand, J., Zworski, M.: Pseudospectra of semiclassical (pseudo-) differential operators. Commun. Pure Appl. Math. 57(3), 384–415 (2004) · Zbl 1054.35035 · doi:10.1002/cpa.20004
[6] Dimassi, M., Sjöstrand, J.: Spectral Asymptotics in the Semi-Classical Limit. London Mathematical Society. Lecture Note Series, 268, pp. xii+227. Cambridge University Press, Cambridge (1999). ISBN: 0-521-66544-2 · Zbl 0926.35002
[7] Gohberg, I.C., Goldberg, S., Kaashoek, M.A.: Classes of linear operators, vol. I. In: Operator Theory: Advances and Applications, vol. 49. Birkhäuser Verlag, Basel (1990) · Zbl 0745.47002
[8] Helffer, B., Nier, F.: Hypoelliptic Estimates and Spectral Theory for Fokker–Planck operators and Witten Laplacians. Lecture Notes in Mathematics, vol. 1862. Springer, Berlin (2005) · Zbl 1072.35006
[9] Hérau, F., Sjöstrand, J., Stolk, C.C.: Semiclassical analysis for the Kramers–Fokker–Planck equation. Commun. Partial Differ. Equ. 30(4–6), 689–760 (2005) · Zbl 1083.35149 · doi:10.1081/PDE-200059278
[10] Hislop, P.D., Sigal, I.M.: Introduction to Spectral Theory: With applications to Schrödinger operators. Applied Mathematical Sciences, vol. 113. Springer, New York (1996) · Zbl 0855.47002
[11] Hitrik, M., Pravda-Starov, K.: Spectra and semigroup smoothing for non-elliptic quadratic operators. Math. Ann. 344(4), 801–846 (2009) · Zbl 1171.47038
[12] Hitrik, M., Pravda-Starov, K.: Semiclassical hypoelliptic estimates for non-selfadjoint operators with double characteristics. Commun. Partial Differ. Equ. 35(6), 988–1028 (2010) · Zbl 1247.35015
[13] Hitrik, M., Pravda-Starov, K.: Eigenvalues and subelliptic estimates for non-selfadjoint semiclassical operators with double characteristics. Ann. Inst. Fourier (to appear) · Zbl 1292.35185
[14] Hitrik, M., Sjöstrand, J., Viola, J.: Resolvent estimates for elliptic quadratic differential operators. Anal. PDE (to appear) · Zbl 1295.47045
[15] Hörmander, L.: The Analysis of Linear Partial Differential Operators. III. Classics in Mathematics. Springer, Berlin (2007) (Pseudo-differential operators, Reprint of the 1994 edition) · Zbl 1115.35005
[16] Hörmander, L.: On the Legendre and Laplace transformations. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 25(3–4), 517–568 (1998) (1997, Dedicated to Ennio De Giorgi)
[17] Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge University Press, Cambridge (1990) (Corrected reprint of the 1985 original) · Zbl 0704.15002
[18] Kaidi, Nourredine, Kerdelhué, Philippe: Forme normale de Birkhoff et résonances. Asymptot. Anal. 23(1), 1–21 (2000) · Zbl 0955.35009
[19] Kramers, H.A.: Brownian motion in a field of force and the diffusion model of chemical reactions. Physica 7, 284–304 (1940) · Zbl 0061.46405 · doi:10.1016/S0031-8914(40)90098-2
[20] Martinez, A.: An Introduction to Semiclassical and Microlocal Analysis. Universitext. Springer, New York (2002) · Zbl 0994.35003
[21] Miller, Peter D.: Applied Asymptotic Analysis. Graduate Studies in Mathematics, vol. 75. American Mathematical Society, Providence, RI (2006) · Zbl 1101.41031
[22] Ottobre, M., Pavliotis, G., Pravda-Starov, K.: Exponential return to equilibrium for hypoelliptic quadratic systems. J. Funct. Anal. 262(9), 4000–4039 (2012) · Zbl 1256.47032
[23] Pravda-Starov, K.: Contraction semigroups of elliptic quadratic differential operators. Math. Z. 259(2), 363–391 (2008) · Zbl 1139.47033
[24] Pravda-Starov, K.: On the pseudospectrum of elliptic quadratic differential operators. Duke Math. J. 145(2), 249–279 (2008) · Zbl 1157.35129
[25] Pravda-Starov, K.: Subelliptic estimates for quadratic differential operators. Am. J. Math. 133(1), 39–89 (2011) · Zbl 1257.47058
[26] Risken, H.: The Fokker-Planck equation. Springer Series in Synergetics, vol. 18, 2nd edn. Springer, Berlin (1989) (Methods of solution and applications) · Zbl 0665.60084
[27] Sjöstrand, J.: Function spaces associated to global I-Lagrangian manifolds. In: Structure of Solutions of Differential Equations (Katata/Kyoto 1995), pp. 369–423. World Scientific Publishing, River Edge, NJ (1996) · Zbl 0889.46027
[28] Sjöstrand, J.: Lectures on resonances (2002). http://www.math.polytechnique.fr/\(\sim\)sjoestrand/CoursgbgWeb.pdf
[29] Sjöstrand, Johannes: Parametrices for pseudodifferential operators with multiple characteristics. Ark. Mat. 12, 85–130 (1974) · Zbl 0317.35076 · doi:10.1007/BF02384749
[30] Trefethen, L.N., Embree, M.: Spectra and Pseudospectra. Princeton University Press, Princeton (2005) · Zbl 1085.15009
[31] Viola, J.: Non-elliptic quadratic forms and semiclassical estimates for non-selfadjoint operators. Int. Math. Res. Not. (2012). doi: 10.1093/imrn/rns188 · Zbl 1238.47033
[32] Zworski, M.: A remark on a paper of E. B Davies: ”Semi-classical states for non-self-adjoint Schrödinger operators” [Commun. Math. Phys. 200(1), 35–41 (1999); MR 1671904 (99m:34197)]. Proc. Am. Math. Soc. 129(10), 2955–2957 (2001, electronic) · Zbl 0921.47060
[33] Zworski, M.: Semiclassical Analysis. Graduate Studies in Mathematics, vol. 138. American Mathematical Society, Providence, RI (2012) · Zbl 1252.58001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.