×

Semiclassical analysis for the Kramers-Fokker-Planck equation. (English) Zbl 1083.35149

The authors study accurate semiclassical estimates of the resolvent of a class of pseudodifferential operators that include the Kramers-Fokker-Planck operator \[ P=v\cdot h\partial_x-V'(x)\cdot h\partial_v+{\gamma\over{2}}(-(h\partial_v)^2+v^2-hn), \] in \({\mathbb R}^{2n},\) where \(V\) is a smooth potential, \(x,v\in{\mathbb R}^n\) and \(h>0\) is essentially the temperature (so that in this case the semiclassical limit is given by a low-temperature limit). The class they consider is made of pseudodifferential operators that are neither elliptic nor self-adjoint, but that satisfy certain subelliptic conditions: if \(p=p_1+ip_2\) is the symbol of \(p^w(x,D)\) (semiclassical Weyl-Hörmander quantization), it is assumed that \(p_1\geq 0\) and that:
\(\bullet\) \(p\in S(\lambda^2,g_0),\) \(\partial p\in S(\lambda,g_0),\) \(\partial^2p_1\in S(1,g_0)\) and \(\partial H_{p_2}p_1\in S(\lambda,g_0)\), where \(1\leq\lambda(x,\xi)=\lambda\in C^\infty\) is a \(g_0\)-admissible weight such that \(\lambda\in S(\lambda,g_0)\) and \(\partial\lambda\in S(1,g_0)\), where \(g_0=| dx| ^2+\lambda^{-2}| d\xi| ^2\) is an admissible Hörmander’s metric on \({\mathbb R}^{2n}\), and where \(H_{p_2}\) is the Hamilton vector-field associated with \(p_2\);
\(\bullet\) \(p\) has finitely many critical points \(C=\{\rho_1,\ldots,\rho_N\}\) (where, for simplicity only, \(p(\rho_j)=0\)) such that, with \(c_0>0\) sufficiently small, in a fixed ball \(B\) containing \(C\) one has \[ p_1+c_0H_{p_2}^2p_1\approx\text{ dist}_C^2; \]
\(\bullet\) outside \(B\) one has \[ p_1+c_0H_{p_2}^2p_1\approx\lambda^2. \] Under these assumptions, the authors obtain precise resolvent estimates inside the pseudo-spectrum and, when \(p^w+Ch^2\) is \(m\)-accretive, a precise description of the spectrum in a ball centered at the origin and radius \(Ch.\) They are then able to apply the resolvent estimates and the description of the eigenspaces to the large time behavior of the semigroup \(e^{-tp^w/h}\), \(t\geq 0,\) associated with the Cauchy problem \[ (h\partial_t+p^w(x,D))u=0,\,\,\,\, u\bigl| _{t=0}=u_0. \] Near the critical points of \(p\), the main technical tool is the use of the FBI-transform and of suitable weighted \(L^2\)-spaces of holomorphic functions; whereas away from the critical points, it is the use of the semiclassical Weyl-Hörmander calculus.

MSC:

35S10 Initial value problems for PDEs with pseudodifferential operators
35P20 Asymptotic distributions of eigenvalues in context of PDEs
47D06 One-parameter semigroups and linear evolution equations
81Q20 Semiclassical techniques, including WKB and Maslov methods applied to problems in quantum theory
47A10 Spectrum, resolvent
47G30 Pseudodifferential operators

References:

[1] Burq N., Comm. Math. Phys. 223 pp 1– (2001) · Zbl 1042.81582 · doi:10.1007/s002200100473
[2] Davies E. B., R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 455 pp 585– (1999) · Zbl 0931.70016 · doi:10.1098/rspa.1999.0325
[3] Davies E. B., Comm. Math. Phys. 200 pp 35– (1999) · Zbl 0921.47060 · doi:10.1007/s002200050521
[4] DOI: 10.1002/cpa.20004 · Zbl 1054.35035 · doi:10.1002/cpa.20004
[5] DOI: 10.1002/1097-0312(200101)54:1<1::AID-CPA1>3.0.CO;2-Q · Zbl 1029.82032 · doi:10.1002/1097-0312(200101)54:1<1::AID-CPA1>3.0.CO;2-Q
[6] Freidlin M. I., Random Perturbations of Dynamical Systems. (1984) · Zbl 0522.60055
[7] Hellfer B., Hypoelliptic Estimates and Spectral Theory for Fokker–Planck Operators and Witten Laplacians. (2005) · Zbl 1072.35006 · doi:10.1007/b104762
[8] DOI: 10.1007/s00205-003-0276-3 · Zbl 1139.82323 · doi:10.1007/s00205-003-0276-3
[9] Hörmander L., The Analysis of Linear Partial Differential Operators. (1985)
[10] Kolokoltsov V. N., Semiclassical Analysis for Diffusions and Stochastic Processes. (2000) · Zbl 0951.60001
[11] DOI: 10.1016/S0031-8914(40)90098-2 · Zbl 0061.46405 · doi:10.1016/S0031-8914(40)90098-2
[12] Risken H., 2nd ed. 18, in: The Fokker-Planck Equation. (1989) · Zbl 0665.60084 · doi:10.1007/978-3-642-61544-3
[13] DOI: 10.1007/BF02384749 · Zbl 0317.35076 · doi:10.1007/BF02384749
[14] DOI: 10.1215/S0012-7094-90-06001-6 · Zbl 0702.35188 · doi:10.1215/S0012-7094-90-06001-6
[15] Sjöstrand J., Structure of Solutions of Differential Equations (Katata/Kyoto, 1995) pp 369– (1996)
[16] Talay D., Progress in Stochastic Structural Dynamics. 152 pp 139– (1999)
[17] Tang S.-H., Math. Res. Lett. 5 pp 261– (1998) · Zbl 0913.35101 · doi:10.4310/MRL.1998.v5.n3.a1
[18] DOI: 10.1137/S0036144595295284 · Zbl 0896.15006 · doi:10.1137/S0036144595295284
[19] Zworski M., Proc. Amer. Math. Soc. 129 pp 2955– (2001) · Zbl 0981.35107 · doi:10.1090/S0002-9939-01-05909-3
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.