×

Exponential return to equilibrium for hypoelliptic quadratic systems. (English) Zbl 1256.47032

The spectral properties of hypoelliptic operators and the problem of return to equilibrium for the associated parabolic equations are topics of current interest. This paper deals with evolution equations associated with general quadratic operators \[ {\partial u\over\partial t}+ q^w(x, D_x)u= 0,\quad u_{t=0}= u_0\in L^2(\mathbb{R}^n), \] where \(q^w(x, D_x)\) is defined in the standard Weil quantization by the complex-valued quadratic form \(q(x,\xi)\), \(\text{Re\,}q\geq 0\) as a symbol. Quadratic operators are non-selfadjoint differential operators. Under appropriate assumptions (zero singular space \(S= \{0\}\) of \(q(x,\xi)\)), a complete description of the spectrum of \(q^w(x,D_x)\) is given and the exponential return to equilibrium with sharp estimates on the rate of convergence is proved. More precisely, the first eigenvalue in the bottom of the spectrum has algebraic multiplicity one with an eigenspace spanned by a ground state of exponential type.
At the end of the paper, several applications to the study of chains of oscillators and to the generalized Langevin equation are proposed.

MSC:

47G30 Pseudodifferential operators
47A10 Spectrum, resolvent
35P05 General topics in linear spectral theory for PDEs
47D07 Markov semigroups and applications to diffusion processes
35H10 Hypoelliptic equations

References:

[1] Ala-Nissila, T.; Ferrando, R.; Ying, S. C., Collective and single particle diffusion on surfaces, Adv. Phys., 51, 949-1078 (2002)
[2] Ceriotti, M.; Bussi, G.; Parrinello, M., Langevin equation with colored noise for constant temperature molecular dynamics simulations, Phys. Rev. Lett., 102, 2, 020601 (2009)
[3] Eckmann, J.-P.; Hairer, M., Non-equilibrium statistical mechanics of strongly anharmonic chains of oscillators, Comm. Math. Phys., 212, 1, 105-164 (2000) · Zbl 1044.82008
[4] Eckmann, J.-P.; Hairer, M., Spectral properties of hypoelliptic operators, Comm. Math. Phys., 235, 233-253 (2003) · Zbl 1040.35016
[5] Eckmann, J.-P.; Pillet, C.-A.; Rey-Bellet, L., Entropy production in nonlinear, thermally driven Hamiltonian systems, J. Stat. Phys., 95, 1-2, 305-331 (1999) · Zbl 0964.82051
[6] Eckmann, J.-P.; Pillet, C.-A.; Rey-Bellet, L., Non-equilibrium statistical mechanics of anharmonic chains coupled to two heat baths at different temperatures, Comm. Math. Phys., 201, 3, 657-697 (1999) · Zbl 0932.60103
[7] Hairer, M.; Pavliotis, G. A., Periodic homogenization for hypoelliptic diffusions, J. Stat. Phys., 117, 1-2, 261-279 (2004) · Zbl 1130.82026
[8] Hairer, M.; Pavliotis, G. A., From ballistic to diffusive behavior in periodic potentials, J. Stat. Phys., 131, 1, 175-202 (2008) · Zbl 1152.82015
[9] Helffer, B.; Nier, F., Hypoelliptic Estimates and Spectral Theory for Fokker-Planck Operators and Witten Laplacians, Lecture Notes in Math., vol. 1862 (2005), Springer-Verlag: Springer-Verlag Berlin · Zbl 1072.35006
[10] Hérau, F., Short and long time behavior of the Fokker-Planck equation in a confining potential and applications, J. Funct. Anal., 244, 1, 95-118 (2007) · Zbl 1120.35016
[11] Hérau, F.; Hitrik, M.; Sjöstrand, J., Tunnel effect for Kramers-Fokker-Planck type operators, Ann. Henri Poincaré, 9, 2, 209-274 (2008) · Zbl 1141.82011
[12] Hérau, F.; Hitrik, M.; Sjöstrand, J., Tunnel effect for the Kramers-Fokker-Planck type operators: return to equilibrium and applications, Int. Math. Res. Not., 2008 (2008), Article ID rnn057 · Zbl 1151.35012
[13] Hérau, F.; Hitrik, M.; Sjöstrand, J., Tunnel effect and symmetries for Kramers Fokker-Planck type operators, J. Inst. Math. Jussieu, 10, 3, 567-634 (2011) · Zbl 1223.35246
[14] Hérau, F.; Nier, F., Isotropic hypoellipticity and trend to equilibrium for the Fokker-Planck equation with a high-degree potential, Arch. Ration. Mech. Anal., 171, 2, 151-218 (2004) · Zbl 1139.82323
[15] Hérau, F.; Sjöstrand, J.; Stolk, C. C., Semiclassical analysis for the Kramers-Fokker-Planck equation, Comm. Partial Differential Equations, 30, 4-6, 689-760 (2005) · Zbl 1083.35149
[16] Hitrik, M.; Pravda-Starov, K., Spectra and semigroup smoothing for non-elliptic quadratic operators, Math. Ann., 344, 4, 801-846 (2009) · Zbl 1171.47038
[17] Hitrik, M.; Pravda-Starov, K., Semiclassical hypoelliptic estimates for non-selfadjoint operators with double characteristics, Comm. Partial Differential Equations, 35, 6, 988-1028 (2010) · Zbl 1247.35015
[18] M. Hitrik, K. Pravda-Starov, Eigenvalues and subelliptic estimates for non-selfadjoint semiclassical operators with double characteristics, preprint, 2011, http://arxiv.org/abs/1105.4801; M. Hitrik, K. Pravda-Starov, Eigenvalues and subelliptic estimates for non-selfadjoint semiclassical operators with double characteristics, preprint, 2011, http://arxiv.org/abs/1105.4801 · Zbl 1292.35185
[19] Hörmander, L., The Analysis of Linear Partial Differential Operators, vols. I, II, III, IV (1985), Springer-Verlag: Springer-Verlag New York · Zbl 0612.35001
[20] Hörmander, L., Symplectic classification of quadratic forms and general Mehler formulas, Math. Z., 219, 3, 413-449 (1995) · Zbl 0829.35150
[21] Kato, T., Perturbation Theory for Linear Operators, Classics Math. (1995), Springer-Verlag: Springer-Verlag Berlin · Zbl 0836.47009
[22] Lerner, N., Metrics on the phase space and non-selfadjoint pseudo-differential operators, (Pseudo-Differential Operators. Theory and Applications, vol. 3 (2010), Birkhäuser: Birkhäuser Basel) · Zbl 1186.47001
[23] Lorenzi, L.; Bertoldi, M., Analytical Methods for Markov Semigroups (2006), CRC Press: CRC Press New York
[24] Metafune, G.; Pallara, D.; Priola, E., Spectrum of Ornstein-Uhlenbeck operators in \(L^p\) spaces with respect to invariant measures, J. Funct. Anal., 196, 1, 40-60 (2002) · Zbl 1027.47036
[25] Ottobre, M.; Pavliotis, G. A., Asymptotic analysis for the Generalized Langevin Equation, Nonlinearity, 24, 1629-1653 (2011) · Zbl 1221.82076
[26] Pravda-Starov, K., Contraction semigroups of elliptic quadratic differential operators, Math. Z., 259, 2, 363-391 (2008) · Zbl 1139.47033
[27] Pravda-Starov, K., Subelliptic estimates for quadratic differential operators, Amer. J. Math., 133, 1, 39-89 (2011) · Zbl 1257.47058
[28] K. Pravda-Starov, Subelliptic estimates for overdetermined systems of quadratic differential operators, Osaka J. Math. (2011), in press.; K. Pravda-Starov, Subelliptic estimates for overdetermined systems of quadratic differential operators, Osaka J. Math. (2011), in press. · Zbl 1257.47058
[29] Rey-Bellet, L., Open classical systems, (Open Quantum Systems II. Open Quantum Systems II, Lecture Notes in Math., vol. 1881 (2006), Springer: Springer Berlin), 41-78 · Zbl 1188.82038
[30] Risken, H., The Fokker-Planck Equation, Springer Ser. Synergetics, vol. 18 (1989), Springer-Verlag: Springer-Verlag Berlin · Zbl 0665.60084
[31] Sjöstrand, J., Parametrices for pseudodifferential operators with multiple characteristics, Ark. Mat., 12, 85-130 (1974) · Zbl 0317.35076
[32] Sjöstrand, J., Function spaces associated to global I-Lagrangian manifolds, (Structure of Solutions of Differential Equations. Structure of Solutions of Differential Equations, Katata/Kyoto, 1995 (1996), World Sci. Publ.: World Sci. Publ. River Edge, NJ) · Zbl 0889.46027
[33] Snook, I., The Langevin and Generalized Langevin Approach to the Dynamics of Atomic, Polymeric and Colloidal Systems (2007), Elsevier: Elsevier Amsterdam
[34] Villani, C., Hypocoercivity, Mem. Amer. Math. Soc., 202, 950 (2009) · Zbl 1197.35004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.