×

Oriented and unitary equivariant bordism of surfaces. (English) Zbl 07901549

Summary: Fix a finite group \(G\). We study \(\Omega^{\mathrm{SO}, G}_2\) and \(\Omega^{U, G}_2\), the unitary and oriented bordism groups of smooth \(G\)-equivariant compact surfaces, respectively, and we calculate them explicitly. Their ranks are determined by the possible representations around fixed points, while their torsion subgroups are isomorphic to the direct sum of the Bogomolov multipliers of the Weyl groups of representatives of conjugacy classes of all subgroups of \(G\). We present an alternative proof of the fact that surfaces with free actions which induce nontrivial elements in the Bogomolov multiplier of the group cannot equivariantly bound. This result permits us to show that the \(2\)-dimensional \(\mathrm{SK}\)-groups (Schneiden und Kleben, or “cut and paste”) of the classifying spaces of a finite group can be understood in terms of the bordism group of free equivariant surfaces modulo the ones that bound arbitrary actions.

MSC:

55N22 Bordism and cobordism theories and formal group laws in algebraic topology
57R75 \(\mathrm{O}\)- and \(\mathrm{SO}\)-cobordism
57R77 Complex cobordism (\(\mathrm{U}\)- and \(\mathrm{SU}\)-cobordism)
57R85 Equivariant cobordism

References:

[1] 10.4064/bc85-0-10 · Zbl 1170.57027 · doi:10.4064/bc85-0-10
[2] 10.2140/agt.2018.18.4001 · Zbl 1408.19005 · doi:10.2140/agt.2018.18.4001
[3] ; Bogomolov, F. A., The Brauer group of quotient spaces of linear representations, Izv. Akad. Nauk SSSR Ser. Mat., 51, 3, 485, 1987 · Zbl 0641.14005
[4] 10.1007/978-3-662-41633-4 · doi:10.1007/978-3-662-41633-4
[5] 10.2307/1970515 · Zbl 0156.22001 · doi:10.2307/1970515
[6] 10.1016/0040-9383(70)90058-3 · Zbl 0209.27504 · doi:10.1016/0040-9383(70)90058-3
[7] 10.1007/BF01304886 · Zbl 0252.55003 · doi:10.1007/BF01304886
[8] 10.1515/9783110858372.312 · doi:10.1515/9783110858372.312
[9] 10.1016/j.topol.2021.107898 · Zbl 1478.57027 · doi:10.1016/j.topol.2021.107898
[10] 10.1090/memo/0543 · Zbl 0876.55003 · doi:10.1090/memo/0543
[11] 10.2307/2952455 · Zbl 0910.55005 · doi:10.2307/2952455
[12] 10.1007/s00208-005-0648-0 · Zbl 1073.55006 · doi:10.1007/s00208-005-0648-0
[13] 10.1007/BF01389831 · Zbl 0164.24501 · doi:10.1007/BF01389831
[14] 10.1007/BF01350617 · Zbl 0201.25701 · doi:10.1007/BF01350617
[15] ; Karpilovsky, Gregory, The Schur multiplier. Lond. Math. Soc. Monogr. (N.S.), 2, 1987 · Zbl 0619.20001
[16] ; Karras, U.; Kreck, M.; Neumann, W. D.; Ossa, E., Cutting and pasting of manifolds : SK-groups. Math. Lect. Ser., 1, 1973 · Zbl 0258.57010
[17] 10.1007/978-0-8176-4934-0_8 · doi:10.1007/978-0-8176-4934-0\_8
[18] 10.2307/2037572 · Zbl 0232.57023 · doi:10.2307/2037572
[19] 10.1007/BF01171078 · Zbl 0282.57022 · doi:10.1007/BF01171078
[20] 10.1090/cbms/091 · doi:10.1090/cbms/091
[21] 10.1353/ajm.2012.0046 · Zbl 1346.20072 · doi:10.1353/ajm.2012.0046
[22] 10.26493/1855-3974.392.9fd · Zbl 1327.14099 · doi:10.26493/1855-3974.392.9fd
[23] 10.1016/0040-9383(75)90004-X · Zbl 0311.57007 · doi:10.1016/0040-9383(75)90004-X
[24] 10.7146/math.scand.a-11885 · Zbl 0456.16027 · doi:10.7146/math.scand.a-11885
[25] 10.2307/2038101 · Zbl 0215.52603 · doi:10.2307/2038101
[26] 10.2307/1997988 · Zbl 0404.57026 · doi:10.2307/1997988
[27] ; Rowlett, Russell J., Bordism of metacyclic group actions, Michigan Math. J., 27, 2, 223, 1980 · Zbl 0442.57016
[28] 10.1090/conm/747/15045 · Zbl 1447.57026 · doi:10.1090/conm/747/15045
[29] 10.5802/crmath.277 · Zbl 1486.57032 · doi:10.5802/crmath.277
[30] 10.1515/crll.1904.127.20 · JFM 35.0155.01 · doi:10.1515/crll.1904.127.20
[31] 10.1017/9781108349161 · Zbl 1451.55001 · doi:10.1017/9781108349161
[32] ; Stong, Robert E., Notes on cobordism theory: mathematical notes, 1968 · Zbl 0181.26604
[33] ; Stong, R. E., Complex and oriented equivariant bordism, Topology of manifolds, 291, 1970
[34] ; Uribe, Bernardo, The evenness conjecture in equivariant unitary bordism, Proceedings of the International Congress of Mathematicians, II, 1217, 2018 · Zbl 1450.55001
[35] 10.2307/1970136 · Zbl 0097.38801 · doi:10.2307/1970136
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.