×

Weak Galerkin finite element methods for semilinear Klein-Gordon equation on polygonal meshes. (English) Zbl 07862450

Summary: The article presents the development of the weak Galerkin finite element method (WG-FEM) for semilinear hyperbolic problems. Semidiscrete error estimate in \(L^2\)-norm as well as \(H^1\)-norm have been executed for the weak Galerkin space \((\mathbf{P}_k(\mathcal{K}), \mathbf{P}_k(\partial\mathcal{K}), [\mathbf{P}_{k-1}(\mathcal{K})]^2)\), where \(k \geq 1\) is an integer. For a fully discrete scheme, we employ the Newmark scheme for temporal discretization. Finally, a few numerical results are provided to validate theoretical results.

MSC:

65M15 Error bounds for initial value and initial-boundary value problems involving PDEs
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
Full Text: DOI

References:

[1] Ablowitz, MJ; Kruskal, MD; Ladik, JF, Solitary wave collisions, SIAM J Appl Math, 36, 428-437, 1979 · Zbl 0408.65075 · doi:10.1137/0136033
[2] Adak, D.; Natarajan, E.; Kumar, S., Virtual element method for semilinear hyperbolic problems on polygonal meshes, Int J Comput Math, 96, 971-991, 2019 · Zbl 1499.65478 · doi:10.1080/00207160.2018.1475651
[3] Adams, R.; Fournier, J., Sobolev spaces, 2003, Amsterdam: Academic Press, Amsterdam · Zbl 1098.46001
[4] Ashyralyev, A.; Sirma, A., A note on the numerical solution of the semilinear Schrödinger equation, Nonlinear Anal Theory Methods Appl, 71, 12, 2507-2516, 2009 · Zbl 1239.65053 · doi:10.1016/j.na.2009.05.048
[5] Chen, CM; Larsson, S.; Zhang, NY, Error estimates of optimal order for finite element methods with interpolated coefficients for the nonlinear heat equation, IMA J Numer Anal, 9, 4, 507-524, 1989 · Zbl 0686.65077 · doi:10.1093/imanum/9.4.507
[6] Chen, L.; Wang, J.; Ye, X., A posteriori error estimates for weak Galerkin finite element methods for second order elliptic problems, J Sci Comput, 59, 496-511, 2014 · Zbl 1307.65153 · doi:10.1007/s10915-013-9771-3
[7] Chrysafinos, K.; Hou, LS, Error estimates for the semidiscrete finite element method approximations of linear and semilinear parabolic equations, SIAM J Numer Anal, 40, 282-306, 2002 · Zbl 1020.65068 · doi:10.1137/S0036142900377991
[8] Deka, B.; Kumar, N., A systematic study on weak Galerkin finite element method for second order parabolic problems, Numer Methods PDE, 39, 2444-2474, 2023 · Zbl 07777013 · doi:10.1002/num.22973
[9] Deka, B.; Roy, P., Weak Galerkin finite element methods for parabolic interface problems with nonhomogeneous jump conditions, Numer Funct Anal Optim, 40, 259-279, 2019 · Zbl 1420.65099 · doi:10.1080/01630563.2018.1549074
[10] Feistauer, M.; Sobotikova, V., Finite element approximation of nonlinear elliptic problems with discontinuous coefficients, RAIRO Model Math Anal Numer, 24, 4, 457-500, 1990 · Zbl 0712.65097 · doi:10.1051/m2an/1990240404571
[11] Han, H.; Zhang, Z., Split local absorbing conditions for one-dimensional nonlinear Klein-Gordon equation on unbounded domain, J Comput Phys, 227, 8992-9004, 2008 · Zbl 1152.65092 · doi:10.1016/j.jcp.2008.07.006
[12] Hu, X.; Mu, L.; Ye, X., A weak Galerkin finite element method for the Navier-Stokes equations, J Comput Appl Math, 362, 614-625, 2019 · Zbl 1422.65389 · doi:10.1016/j.cam.2018.08.022
[13] Huang, Y.; Li, J.; Li, D., Developing weak Galerkin finite element methods for the wave equation, Numer Methods Partial Differ Equ, 33, 868-884, 2017 · Zbl 1377.65129 · doi:10.1002/num.22127
[14] Irk, D.; Kirli, E.; Gorgulu, MZ, A high order accurate numerical solution of the Klein-Gordon equation, Appl Math Inf Sci, 16, 331-339, 2022
[15] Kim, S.; Lim, H., High order schemes for acoustic waveform simulation, Appl Numer Math, 57, 402-414, 2007 · Zbl 1113.65087 · doi:10.1016/j.apnum.2006.05.003
[16] Kirby RC, Kieu, TT (2013) Galerkin finite element methods for nonlinear Klein-Gordon equations. Math Comput 189(4)
[17] Lehrenfeld C (2010) Hybrid discontinuous Galerkin methods for solving incompressible flow problems. Diploma Thesis, MathCCES/IGPM, RWTH Aachen
[18] Li, J.; Chen, Y-T, Computational partial differential equations using MATLAB, 2008, London: Chapman and Hall/CRC Press, London · doi:10.1201/9781420089059
[19] Li, B.; Sun, W., Unconditional convergence and optimal error estimates of a Galerkin-mixed FEM for incompressible miscible flow in porous media, SIAM J Numer Anal, 51, 1959-1977, 2013 · Zbl 1311.76067 · doi:10.1137/120871821
[20] Li, QH; Wang, J., Weak Galerkin finite element methods for parabolic equations, Numer Methods Partial Differ Equ, 29, 2004-2024, 2013 · Zbl 1307.65133 · doi:10.1002/num.21786
[21] Li, H.; Mu, L.; Ye, X., Interior energy error estimates for the weak Galerkin finite element method, Numer Math, 139, 447-478, 2018 · Zbl 1447.65154 · doi:10.1007/s00211-017-0940-4
[22] Li, D.; Nie, Y.; Wang, C., Superconvergence of numerical gradient for weak Galerkin finite element methods on nonuniform Cartesian partitions in three dimensions, Comput Math Appl, 78, 905-928, 2019 · Zbl 1442.65380 · doi:10.1016/j.camwa.2019.03.010
[23] Li, D.; Wang, C.; Wang, J., Superconvergence of the gradient approximation for weak Galerkin finite element methods on nonuniform rectangular partitions, Appl Numer Math, 150, 396-417, 2020 · Zbl 1434.65266 · doi:10.1016/j.apnum.2019.10.013
[24] Li, D.; Wang, C.; Wang, J., A primal-dual finite element method for transport equations in nondivergence form, J Comput Appl Math, 412, 2022 · Zbl 1486.65256 · doi:10.1016/j.cam.2022.114313
[25] Lin, G.; Liu, J.; Sadre-Marandi, F., A comparative study on the weak Galerkin, discontinuous Galerkin, and mixed finite element methods, J Comput Appl Math, 273, 346-362, 2015 · Zbl 1295.65114 · doi:10.1016/j.cam.2014.06.024
[26] Lin, R.; Ye, X.; Zhang, S.; Zhu, P., A weak Galerkin finite element method for singularly perturbed convection-diffusion-reaction problems, SIAM J Numer Anal, 56, 1482-1497, 2018 · Zbl 1448.65239 · doi:10.1137/17M1152528
[27] Lipo, D.; Paye, KR; Popivanov, NI, On the degenerate hyperbolic Goursat problem for linear and nonlinear equation of Tricomi type, Nonlinear Anal Theory Methods Appl, 108, 29-56, 2014 · Zbl 1297.35145 · doi:10.1016/j.na.2014.05.009
[28] Liu, Y.; Nie, Y., A priori and a posteriori error estimates of the weak Galerkin finite element method for parabolic problems, Comput Math Appl, 99, 73-83, 2021 · Zbl 1524.65571 · doi:10.1016/j.camwa.2021.08.002
[29] Liu X, Li J, Chen Z (2018a) A weak Galerkin finite element method for the Navier-Stokes equations. J Comput Appl Math 333:442-457 · Zbl 1395.76040
[30] Liu J, Tavener S, Wang Z (2018b) Lowest-order weak Galerkin finite element method for Darcy flow on convex polygonal meshes. SIAM J Sci Comput 40:B1229-B1252 · Zbl 1404.65232
[31] Liu, J.; Tavener, S.; Wang, Z., Penalty-free any-order weak Galerkin FEMs for elliptic problems on quadrilateral meshes, J Sci Comput, 83, 47, 2020 · Zbl 1440.65219 · doi:10.1007/s10915-020-01239-4
[32] Liu, Y.; Guan, Z.; Nie, Y., Unconditionally optimal error estimates of a linearized weak Galerkin finite element method for semilinear parabolic equations, Adv Comput Math, 48, 47, 2022 · Zbl 1492.65321 · doi:10.1007/s10444-022-09961-3
[33] Mu, L.; Chen, Z., A new WENO weak Galerkin finite element method for time dependent hyperbolic equations, Appl Numer Math, 159, 106-124, 2021 · Zbl 1459.65187 · doi:10.1016/j.apnum.2020.09.002
[34] Mu L, Wang J, Ye X (2015a) Weak Galerkin finite element methods on polytopal meshes. Int J Numer Anal Model 12:31-53 · Zbl 1332.65172
[35] Mu L, Wang J, Xiu Y, Zhang S (2015b) A weak Galerkin finite element method for the Maxwell equations. J Sci Comput 65:363-386 · Zbl 1327.65220
[36] Mu, L.; Wang, J.; Ye, X., A least-squares-based weak Galerkin finite element method for second order elliptic equations, SIAM J Sci Comput, 39, A1531-A1557, 2017 · Zbl 1404.65233 · doi:10.1137/16M1083244
[37] Shields, S.; Li, J.; Machorro, E., Weak Galerkin methods for time-dependent Maxwell’s equations, Comput Math Appl, 74, 2106-2124, 2017 · Zbl 1397.65192 · doi:10.1016/j.camwa.2017.07.047
[38] Sinha, R.; Deka, B., Finite element methods for semilinear elliptic and parabolic interface problems, Appl Numer Math, 59, 1870-1883, 2009 · Zbl 1172.65064 · doi:10.1016/j.apnum.2009.02.001
[39] Sun, S.; Huang, Z.; Wang, C., Weak Galerkin finite element method for a class of quasilinear elliptic problems, Appl Math Lett, 79, 67-72, 2018 · Zbl 1466.65202 · doi:10.1016/j.aml.2017.11.017
[40] Thomée, V., Galerkin finite element methods for parabolic problems, 2007, Berlin: Springer Science & Business Media, Berlin
[41] Wang, C.; Wang, J., A primal-dual weak Galerkin finite element method for second order elliptic equations in non-divergence form, Math Comput, 87, 515-545, 2018 · Zbl 1380.65390 · doi:10.1090/mcom/3220
[42] Wang, J.; Ye, X., A weak Galerkin finite element method for second order elliptic problems, J Comput Appl Math, 241, 103-115, 2013 · Zbl 1261.65121 · doi:10.1016/j.cam.2012.10.003
[43] Wang, J.; Ye, X., A weak Galerkin mixed finite element method for second order elliptic problems, Math Comput, 83, 2101-2126, 2014 · Zbl 1308.65202 · doi:10.1090/S0025-5718-2014-02852-4
[44] Wang, J.; Wang, R.; Zhai, Q.; Zhang, R., A systematic study on weak Galerkin finite element methods for second order elliptic problems, J Sci Comput, 74, 1369-1396, 2018 · Zbl 1398.65311 · doi:10.1007/s10915-017-0496-6
[45] Wang, X.; Gao, F.; Sun, Z., Weak Galerkin finite element method for viscoelastic wave equations, J Comput Appl Math, 375, 2020 · Zbl 1435.65168 · doi:10.1016/j.cam.2020.112816
[46] Wheeler, MF, A priori \(L^2\) error estimates for Galerkin approximations to parabolic partial differential equations, SIAM J Numer Anal, 10, 723-759, 1973 · doi:10.1137/0710062
[47] Yang L (2006) Numerical studies of the Klein-Gordon-Schrödinger equations. Master’s Thesis, National University Singapore, Singapore
[48] Yang, H., High-order energy and linear momentum conserving methods for the Klein-Gordon equation, Mathematics, 6, 10, 200, 2018 · Zbl 1515.65261 · doi:10.3390/math6100200
[49] Yin, F.; Tian, T.; Song, J.; Zhu, M., Spectral methods using Legendre wavelets for nonlinear Klein/Sine-Gordon equations, J Comput Appl Math, 275, 321-334, 2015 · Zbl 1334.65175 · doi:10.1016/j.cam.2014.07.014
[50] Zenisek, A., The finite element method for nonlinear elliptic equations with discontinuous coefficients, Numer Math, 58, 51-77, 1990 · Zbl 0709.65081 · doi:10.1007/BF01385610
[51] Zhang, T., A posteriori error analysis for the weak Galerkin method for solving elliptic problems, Int J Comput Methods, 15, 1850075, 2018 · Zbl 1404.65285 · doi:10.1142/S0219876218500755
[52] Zhang, T.; Chen, Y., An analysis of the weak Galerkin finite element method for convection-diffusion equation, Appl Math Comput, 346, 612-621, 2019 · Zbl 1429.65281
[53] Zhang, H.; Zou, Y.; Xu, Y.; Zhai, Q.; Yue, H., Weak Galerkin finite element method for second order parabolic equations, Int J Numer Anal Model, 13, 525-544, 2016 · Zbl 1362.65110
[54] Zhou, S.; Gao, F.; Li, B.; Sun, Z., Weak Galerkin finite element method with second-order accuracy in time for parabolic problems, Appl Math Lett, 90, 118-123, 2019 · Zbl 1410.65387 · doi:10.1016/j.aml.2018.10.023
[55] Zlamal, M., A finite element solution of the nonlinear heat equation, RAIRO Anal Numer, 14, 203-216, 1980 · Zbl 0442.65103 · doi:10.1051/m2an/1980140202031
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.