×

Superconvergence of numerical gradient for weak Galerkin finite element methods on nonuniform Cartesian partitions in three dimensions. (English) Zbl 1442.65380

Summary: A superconvergence error estimate for the gradient approximation of the second order elliptic problem in three dimensions is analyzed by using weak Galerkin finite element scheme on the uniform and non-uniform cubic partitions. Due to the loss of the symmetric property from two dimensions to three dimensions, this superconvergence result in three dimensions is not a trivial extension of the recent superconvergence result in two dimensions [D. Li et al., “Superconvergence of the gradient approximation for weak Galerkin finite element methods on nonuniform rectangular partitions”, Preprint, arXiv:1804.03998] from rectangular partitions to cubic partitions. The error estimate for the numerical gradient in the \(L^2\)-norm arrives at a superconvergence order of \(\mathcal{O}(h^r)(1.5\leq r\leq 2)\) when the lowest order weak Galerkin finite elements consisting of piecewise linear polynomials in the interior of the elements and piecewise constants on the faces of the elements are employed. A series of numerical experiments are illustrated to confirm the established superconvergence theory in three dimensions.

MSC:

65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65N12 Stability and convergence of numerical methods for boundary value problems involving PDEs

References:

[1] Ewing, R. E.; Liu, M.; Wang, J., A new superconvergence for mixed finite element approximations, SIAM J. Numer. Anal., 40, 6, 2133-2150 (2002) · Zbl 1036.65083
[2] Wei, H.; Chen, L.; Zheng, B., Adaptive mesh refinement and superconvergence for two-dimensional interface problems, SIAM J. Sci. Comput., 36, 4, A1478-A1499 (2014) · Zbl 1304.65259
[3] Zienkiewicz, O.; Zhu, J., The superconvergence patch recovery (SPR) and adaptive finite element refinement, Comput. Methods Appl. Mech. Engrg., 101, 1-3, 207-224 (1992) · Zbl 0779.73078
[4] Ainsworth, M.; Oden, J. T., A Posteriori Error Estimation in Finite Element Analysis (2000), Wiley Interscience: Wiley Interscience New York · Zbl 1008.65076
[5] Chen, H.; Wang, J., An interior estimate of superconvergence for finite element solutions for second-order elliptic problems on quasi-uniform meshes by local projections, SIAM J. Numer. Anal., 41, 4, 1318-1338 (2003) · Zbl 1058.65118
[6] Fairweather, G.; Lin, Q.; Lin, Y.; Wang, J.; Zhang, S., Asymptotic expansions and richardson extrapolation of approximate solutions for second order elliptic problems on rectangular domains by mixed finite element methods, SIAM J. Numer. Anal., 44, 3, 1122-1149 (2006) · Zbl 1388.76359
[7] Zienkiewics, O.; Zhu, J., The superconvergence patch recovery and a posteriori error estimates, Part 1, Internat. J. Numer. Methods Engrg., 33, 1331-1364 (1992) · Zbl 0769.73084
[8] Zienkiewics, O.; Zhu, J., The superconvergence patch recovery and a posteriori error estimates, Part 2, Internat. J. Numer. Methods Engrg., 33, 1365-1382 (1992) · Zbl 0769.73085
[9] Ferreira, J. A.; Grigorieff, R. D., Supraconvergence and supercloseness of a scheme for elliptic equations on nonuniform grids, Numer. Funct. Anal. Optim., 27, 539-564 (2006) · Zbl 1102.65109
[10] He, R.; Feng, X.; Chen, Z., \(H^1\)-superconvergence of a difference finite element method based on the \(P_1 - P_1\)-conforming element on non-uniform meshes for the \(3 D\) Possion equation, Math. Comp., 87, 312, 1659-1688 (2018) · Zbl 1471.65171
[11] Brandts, J. H.; Křížek, M., History and future of superconvergence in three-dimensional finite element methods, (Proceedings of the Conference on Finite Element Methods: Three-Dimensional Problems. Proceedings of the Conference on Finite Element Methods: Three-Dimensional Problems, GAKUTO Internat. Ser. Math. Sci. Appl, vol. 15 (2001), Gakkōtosho: Gakkōtosho Tokyo), 24-35
[12] Babuška, I.; Strouboulis, T.; Upadhyay, C. S.; Gangaray, S. K., Computer-based proof of existence of superconvergence points in the finite element method; superconvergence of derivatives in finite element solutions of Laplaces’s, Poisson’s and the elasticity equations, Numer. Methods Partial Differential Equations, 12, 347-392 (1996) · Zbl 0854.65089
[13] Chen, C. M.; Huang, Y. Q., High Accuracy Theory of Finite Elements (1995), Hunan Science Press: Hunan Science Press Changsha, China, (in Chinese)
[14] Wang, C., Superconvergence of Ritz-Galerkin finite element approximations for second order elliptic problems, Numer. Methods Partial Differential Equations, 34, 838-856 (2018) · Zbl 1407.65265
[15] Zhu, Q. D.; Lin, Q., Superconvergence Theory of the Finite Element Method (1989), Hunan Science Press: Hunan Science Press China, Changsha
[16] Zlamal, M., Some superconvergence results in the finite element method, (Dold, A.; Eckmann, B., Mathematical Aspects of Finite Element Methods. Mathematical Aspects of Finite Element Methods, Springers Lecture Notes in Mathematics, vol. 606 (1975)) · Zbl 0366.65050
[17] Krizek, M.; Neittaanmaki, P., On superconvergence techniques, Acta Appl. Math., 9, 175-198 (1987) · Zbl 0624.65107
[18] Cao, W.; Shu, C.; Yang, Y.; Zhang, Z., Superconvergence of discontinuous Galerkin methods for two-dimensional hyperbolic equations, SIAM J. Numer. Anal., 53, 4, 1651-1671 (2015) · Zbl 1328.65195
[19] Mustapha, K.; Nour, M.; Cockburn, B., Convergence and superconvergence analyses of HDG methods for time fractional diffusion problems, Adv. Comput. Math., 42, 2, 377-393 (2016) · Zbl 1339.26021
[20] Liu, G. R.; Nguyen-Thoi, T., Smoothed Finite Element Methods (2016), CRC press
[21] Harris, A.; Harris, S., Superconvergence of weak Galerkin finite element approximation for second order elliptic problems by L2-projections, Appl. Math. Comput., 227, 610-621 (2014) · Zbl 1364.65249
[22] D. Li, C. Wang, J. Wang, Superconvergence of the gradient approximation for weak Galerkin finite element methods on nonuniform rectangular partitions, https://arxiv.org/pdf/1804.03998v2.pdf; D. Li, C. Wang, J. Wang, Superconvergence of the gradient approximation for weak Galerkin finite element methods on nonuniform rectangular partitions, https://arxiv.org/pdf/1804.03998v2.pdf
[23] Y. Liu, J. Wang, Simplified weak Galerkin and finite difference schemes for the Stokes equation, https://arxiv.org/pdf/1803.0012v1.pdf; Y. Liu, J. Wang, Simplified weak Galerkin and finite difference schemes for the Stokes equation, https://arxiv.org/pdf/1803.0012v1.pdf
[24] Y. Liu, J. Wang, A simiplified weak Galerkin finite element method: algorithm and error estimates, https://arxiv.org/pdf/1808.08667v2.pdf; Y. Liu, J. Wang, A simiplified weak Galerkin finite element method: algorithm and error estimates, https://arxiv.org/pdf/1808.08667v2.pdf
[25] Wang, R.; Zhang, R.; Zhang, X.; Zhang, Z., Superconvergence analysis and polynomial preserving recovery for a class of weak Galerkin methods, Numer. Methods Partial Differential Equations, 34, 1, 317-335 (2018) · Zbl 1390.65150
[26] Wang, J.; Ye, X., A weak Galerkin finite element method for second-order elliptic problems, J. Comput. Appl. Math., 307, 103-115 (2013) · Zbl 1261.65121
[27] Heimsund, B.; Tai, X.; Wang, J., Superconvergence for the gradient of finite element approximations by L2-projections, SIAM J. Numer. Anal., 40, 4, 1263-1280 (2002) · Zbl 1047.65095
[28] Krizek, M.; Neittaanmakï, P., Superconvergence phenomenon in the finite element method arising from averaging gradients, Numer. Math., 45, 105-116 (1984) · Zbl 0575.65104
[29] Kantchev, V.; Lazarov, P. D., Superconvergence of the gradient of linear finite elements for \(3 D\) possion equation, optimal algorithms, Publ. Bulg. Acad. Sci. Sofia, 172-182 (1986) · Zbl 0672.65088
[30] Schatz, A. H.; Sloan, I. H.; Wahlbin, L. B., Superconvergence in finite element methods and meshes that are locally symmetric with respect to a point, SIAM J. Numer. Anal., 33, 505-521 (1996) · Zbl 0855.65115
[31] Wahlbin, L., Superconvergence in Galerkin Finite Element Methods (2006), Springer
[32] Mu, L.; Wang, J.; Ye, X.; Zhao, S., A new weak Galerkin finite element method for elliptic interface problems, J. Comput. Phys., 325, 157-173 (2016) · Zbl 1380.65383
[33] Wang, C., New discretization schemes for time-harmonic Maxwell equations by weak Galerkin finite element methods, J. Comput. Appl. Math., 341, 127-143 (2018) · Zbl 1427.78024
[34] Shields, S.; Li, J.; Machorro, E. A., Weak Galerkin methods for time-dependent Maxwell’s equations, Comput. Math. Appl., 74, 2106-2124 (2017) · Zbl 1397.65192
[35] Mu, L.; Wang, J.; Ye, X.; Zhang, S., A weak Galerkin finite element method for the Maxwell equations, J. Sci. Comput., 65, 363-386 (2015) · Zbl 1327.65220
[36] Mu, L.; Wang, J.; Ye, X.; Zhao, S., Numerical studies on the weak Galerkin method for the Helmholtz equation with large wave number, Commun. Comput. Comput. Phys., 15, 1461-1474 (2014) · Zbl 1388.65156
[37] Huang, Y.; Li, J.; Li, D., Developing weak Galerkin finite element method for the wave equation, Numer. Methods Partial Differential Equations, 33, 3, 868-884 (2017) · Zbl 1377.65129
[38] Wang X. Ye, J., A weak Galerkin finite element method for the Stokes equations, Adv. Comput. Math., 42, 155-174 (2016) · Zbl 1382.76178
[39] Wang, C.; Wang, J., Discretization of div – curl systems by weak Galerkin finite element methods on polyhedral partitions, J. Sci. Comput., 68, 1144-1171 (2016) · Zbl 1353.65125
[40] Wang, C.; Wang, J., A hybridized formulation for weak Galerkin finite element methods for biharmonic equation on polygonal or polyhedral meshes, Int. J. Numer. Anal. Model., 12, 302-317 (2015) · Zbl 1337.65160
[41] Wang, C.; Wang, J., An efficient numerical scheme for the biharmonic equation by weak Galerkin finite element methods on polygonal or polyhedral meshes, J. Comput. Math. Appl., 68, 12, 2314-2330 (2014) · Zbl 1361.35058
[42] Wang, J.; Zhai, Q.; Zhang, R.; Zhang, S., A weak Galerkin finite element scheme for the Cahn-Hilliard equation, Math. Comp., 88, 315, 211-235 (2018) · Zbl 1420.65128
[43] Lin, R.; Ye, X.; Zhang, S.; Zhu, P., A weak Galerkin finite element method for singularly perturbed by convection – diffusion-reaction problems, SIAM J. Numer. Anal., 56, 3, 1482-1497 (2018) · Zbl 1448.65239
[44] Wang, C.; Wang, J., A primal – dual weak Galerkin finite element method for second order elliptic equations in non-divergence form, Math. Comp., 87, 515-545 (2018) · Zbl 1380.65390
[45] C. Wang, J. Wang, A primal – dual weak Galerkin finite element method for Fokker-Planck type equations, SIAM J. Numer. Anal. https://arxiv.org/pdf/170405606pdf; C. Wang, J. Wang, A primal – dual weak Galerkin finite element method for Fokker-Planck type equations, SIAM J. Numer. Anal. https://arxiv.org/pdf/170405606pdf
[46] C. Wang, J. Wang, Primal – dual weak Galerkin finite element methods for elliptic Cauchy problems, https://arxiv.org/pdf/1806.01583.pdf; C. Wang, J. Wang, Primal – dual weak Galerkin finite element methods for elliptic Cauchy problems, https://arxiv.org/pdf/1806.01583.pdf
[47] C. Wang, A new primal – dual weak Galerkin finite element method for ill-posed elliptic Cauchy problems, https://arxiv.org/pdf/1809.04697v1.pdf; C. Wang, A new primal – dual weak Galerkin finite element method for ill-posed elliptic Cauchy problems, https://arxiv.org/pdf/1809.04697v1.pdf
[48] Mu, L.; Wang, J.; Wang, Y.; Ye, X., A computational study of the weak Galerkin method for second-order elliptic equations, Numer. Algorithms, 63, 753-777 (2013) · Zbl 1271.65140
[49] Wang, J., A superconvergence analysis for finite element solutions by the least-squares surface fitting on irregular meshes for smooth problems, J. Math. Study, 33, 3, 229-243 (2000) · Zbl 0987.65108
[50] Hannukainen, A.; Korotov, S.; Krizek, M., Nodal \(O(h^4)\)-superconvergence in \(3 D\) by averaging piecewise linear, bilinear, and trilinear FE approximations, J. Comput. Math., 28, 1, 1-10 (2010) · Zbl 1224.65247
[51] Krizek, M., Superconvergence phenomenon on three-dimensional meshes, Int. J. Numer. Anal. Model., 2, 1, 43-56 (2015) · Zbl 1071.65139
[52] Lin, R.; Zhang, Z., Natural superconvergence points in three-dimensional finite elements, SIAM J. Numer. Anal., 46, 1281-1297 (2008) · Zbl 1168.65059
[53] Zhang, Z., Derivative superconvergence points in finite element solutions of Poission’s equation for the serendipity and intermediate families – a theoretical justification, Math. Comp., 67, 541-552 (1998) · Zbl 0893.65056
[54] Wang, J.; Ye, X., A weak Galerkin mixed finite element method for second-order elliptic problems, Math. Comp., 83, 2101-2126 (2014) · Zbl 1308.65202
[55] Wang, J.; Wang, C., Weak Galerkin finite element methods for elliptic PDEs, Sci. China, 45, 1061-1092 (2015) · Zbl 1488.65655
[56] Chen, L.; Wang, J.; Ye, X., A posteriori error estimates for weak Galerkin finite element methods for second order elliptic problems, J. Sci. Comput., 59, 496-511 (2014) · Zbl 1307.65153
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.