×

Supercloseness analysis and polynomial preserving recovery for a class of weak Galerkin methods. (English) Zbl 1390.65150

The authors conduct a supercloseness analysis and polynomial preserving recovery for a class of weak Galerkin (WG) methods. They first present the definition of weak functions and derivatives and present the WG method for the model second order elliptic equation. Later, the authors describe a Lagrange type interpolation operator which is used in the supercloseness analysis. In addition, they present error estimates and the construction of the polynomial preserving recovery operator for WG solutions. Numerical examples are presented to illustrate the discussed theory.

MSC:

65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65N12 Stability and convergence of numerical methods for boundary value problems involving PDEs

References:

[1] J. Wang; X. Ye, \(A weak Galerkin finite element method for second-order elliptic problems\), J. Comput. Appl. Math., 241, 103-115, (2013) · Zbl 1261.65121 · doi:10.1016/j.cam.2012.10.003
[2] L. Mu; J. Wang; X. Ye, \(Weak Galerkin finite element methods on polytopal meshes\), Int. J. Numer. Anal. Model., 12, 31-53, (2015) · Zbl 1332.65172
[3] J. Wang; X. Ye, \(A weak Galerkin mixed finite element method for second order elliptic problems\), Math. Comp., 83, 2101-2126, (2014) · Zbl 1308.65202 · doi:10.1090/S0025-5718-2014-02852-4
[4] L. Mu; J. Wang; X. Ye; S. Zhang, \(A C0-weak Galerkin finite element method for the biharmonic equation\), J. Sci. Comput., 59, 473-495, (2014) · Zbl 1305.65233 · doi:10.1007/s10915-013-9770-4
[5] R. Zhang; Q. Zhai, \(A weak Galerkin finite element scheme for the biharmonic equations by using polynomials of reduced order\), J. Sci. Comput., 64, 559-585, (2015) · Zbl 1331.65163 · doi:10.1007/s10915-014-9945-7
[6] D. N. Arnold; J. Douglas; V. Thomée, \(Superconvergence of a finite element approximation to the solution of a Sobolev equation in a single space variable\), Math. Comp., 36, 53-63, (1981) · Zbl 0466.65062 · doi:10.1090/S0025-5718-1981-0595041-4
[7] I. Babuška; T. Strouboulis, (2001)
[8] J. Douglas, 475-490, (1972)
[9] Y. Huang; J. Li; Q. Lin, \(Superconvergence analysis for time-dependent Maxwell´s equations in metamaterials\), Numer. Methods Partial Differential Equations, 28, 1794-1816, (2012) · Zbl 1252.78030
[10] 196, (1997)
[11] A. H. Schatz; I. H. Sloan; L. B. Wahlbin, \(Superconvergence in finite element methods and meshes that are locally symmetric with respect to a point\), SIAM J. Numer. Anal., 33, 505-521, (1996) · Zbl 0855.65115 · doi:10.1137/0733027
[12] L. B. Wahlbin, (1995)
[13] A. Naga; Z. Zhang, \(A posteriori error estimates based on the polynomial preserving recovery\), SIAM J. Numer. Anal., 42, 1780-1800, (2004) · Zbl 1078.65098 · doi:10.1137/S0036142903413002
[14] A. Naga; Z. Zhang, \(The polynomial-preserving recovery for higher order finite element methods in 2D and 3D\), Discrete Contin. Dyn. Syst. Ser. B, 5, 769-798, (2005) · Zbl 1078.65108 · doi:10.3934/dcdsb.2005.5.769
[15] Z. Zhang; A. Naga, \(A new finite element gradient recovery method: superconvergence property\), SIAM J. Sci. Comput., 26, 1192-1213, (2005) · Zbl 1078.65110 · doi:10.1137/S1064827503402837
[16] A. Harris; S. Harris, \(Superconvergence of weak Galerkin finite element approximation for second order elliptic problems by L2-projections\), Appl. Math. Comput., 227, 610-621, (2014) · Zbl 1364.65249
[17] T. Zhang; S. Yu, \(The derivative patch interpolation recovery technique and superconvergence for the discontinuous Galerkin method\), Appl. Numer. Math., 85, 128-141, (2014) · Zbl 1295.65104 · doi:10.1016/j.apnum.2014.06.013
[18] P. Grisvard, (1985)
[19] V. A. Kondratév, \(Boundary value problems for elliptic equations in domains with conical or angular points\), Trudy Moskov. Mat. Obsc., 16, 209-292, (1967) · Zbl 0162.16301
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.