×

Extremal bounds for Dirichlet polynomials with random multiplicative coefficients. (English) Zbl 1540.11106

A Steinhaus random multiplicative function \(f\) is defined as follows: Over the primes \(p\), \((f(p))_p\) is a sequence of i.i.d. Steinhaus random variables, that is, \(f(2)\) is uniformly distributed over the unitary complex circle. The definition is extended over the positive integers \(n\) by following the multiplicative rule, that is, \(f\) is defined to be completely multiplicative.
In the paper under review, the authors investigate the supremum of a Dirichlet polynomial of the form \[ D_N(t):=\frac{1}{\sqrt{N}}\sum_{n\leq N}f(n)n^{it}. \] They prove with probability \(1-o(1)\) an upper and a lower bound for the quantity \[ \mathcal{S}(N,C):=\sup_{|t|\leq N^{C(N)}}|D_N(t)|, \] where \(C(N)\) is assumed to satisfy a growth condition. These upper and lower bound are interesting to compare with the case where \((f(n))_n\) are i.i.d, where we see a much smaller related quantity to \(\mathcal{S}(N,C)\).

MSC:

11K65 Arithmetic functions in probabilistic number theory
11N56 Rate of growth of arithmetic functions

References:

[1] L.-P. Arguin, D. Belius, P. Bourgade, M. Radziwiłł, and K. Soundararajan, Maximum of the Riemann zeta function on a short interval of the critical line, Comm. Pure Appl. Math. 72 (2019), 500-535. · Zbl 1443.11161
[2] L.-P. Arguin, D. Belius, and A. J. Harper, Maxima of a randomized Riemann zeta function, and branching random walks, Ann. Appl. Probab. 27 (2017), 178-215. · Zbl 1362.60050
[3] L.-P. Arguin, P. Bourgade, and M. Radziwiłł, The Fyodorov-Hiary-Keating Conjec-ture. I, arXiv:2007.00988 (2020).
[4] L.-P. Arguin, G. Dubach, and L. Hartung, Maxima of a random model of the Riemann zeta function over intervals of varying length, arXiv:2103.04817v2 (2022).
[5] L.-P. Arguin, F. Ouimet, and M. Radziwiłł, Moments of the Riemann zeta function on short intervals of the critical line, Ann. Probab. 49 (2021), 3106-3141. · Zbl 1497.11194
[6] M. Aymone, S. Frómeta, and R. Misturini, Law of the iterated logarithm for a random Dirichlet series, Electron. Commun. Probab. 25 (2020), art. 56, 14 pp. · Zbl 1469.60088
[7] M. Aymone, W. Heap, and J. Zhao, Partial sums of random multiplicative functions and extreme values of a model for the Riemann zeta function, J. London Math. Soc. (2) 103 (2021), 1618-1642. · Zbl 1482.11103
[8] M. Balazard et A. De Roton, Notes de lecture de l’article “Partial sums of the Möbius function” de Kannan Soundararajan, arXiv:0810.3587 (2008).
[9] J. Basquin, Sommes friables de fonctions multiplicatives aléatoires, Acta Arith. 152 (2012), 243-266. · Zbl 1304.11103
[10] J. Benatar, A. Nishry, and B. Rodgers, Moments of polynomials with random multi-plicative coefficients, Mathematika 68 (2022), 191-216. · Zbl 1523.11143
[11] S. Chatterjee and K. Soundararajan, Random multiplicative functions in short inter-vals, Int. Math. Res. Notices 2012, 479-492. · Zbl 1248.11056
[12] D. W. Farmer, S. M. Gonek, and C. P. Hughes, The maximum size of L-functions, J. Reine Angew. Math. 609 (2007), 215-236. · Zbl 1234.11109
[13] Y. V. Fyodorov, G. A. Hiary, and J. P. Keating, Freezing transition, characteristic polynomials of random matrices, and the Riemann zeta function, Phys. Rev. Lett. 108 (2012), no. 17, art. 170601, 5 pp.
[14] A. Granville and K. Soundararajan, Large character sums, J. Amer. Math. Soc. 14 (2001), 365-397. · Zbl 0983.11053
[15] G. H. Hardy and S. Ramanujan, The normal number of prime factors of a number n, Quart. J. Math. 48 (1917), 76-92; also in: Collected Papers of Srinivasa Ramanujan, AMS Chelsea Publ., Providence, RI, 2000, 262-275. · JFM 46.0262.03
[16] A. J. Harper, A note on the maximum of the Riemann zeta function, and log-correlated random variables, arXiv:1304.0677 (2013).
[17] A. J. Harper, Moments of random multiplicative functions, II: High moments, Algebra Number Theory 13 (2019), 2277-2321. · Zbl 1472.11265
[18] A. J. Harper, On the partition function of the Riemann zeta function, and the Fyodorov-Hiary-Keating conjecture, arXiv:1906.05783 (2019).
[19] A. J. Harper, A. Nikeghbali, and M. Radziwiłł, A note on Helson’s conjecture on moments of random multiplicative functions, in: Analytic Number Theory, Springer, Cham, 2015, 145-169. · Zbl 1391.11140
[20] W. P. Heap and S. Lindqvist, Moments of random multiplicative functions and trun-cated characteristic polynomials, Quart. J. Math. 67 (2016), 683-714. · Zbl 1418.11139
[21] O. Klurman, I. D. Shkredov, and M. W. Xu, On the random Chowla conjecture, arXiv:2202.08767 (2022).
[22] E. Landau, Über die Möbiussche Funktion, Rend. Circ. Matem. Palermo 48 (1924), 277-280. · JFM 50.0120.01
[23] M. Lifshits and M. Weber, On the supremum of random Dirichlet polynomials, Studia Math. 182 (2007), 41-65. · Zbl 1124.30004
[24] H. Maier and A. Sankaranarayanan, On multiplicative functions resembling the Möbius function, J. Number Theory 163 (2016), 75-88. · Zbl 1405.11122
[25] J. Najnudel, On the extreme values of the Riemann zeta function on random intervals of the critical line, Probab. Theory Related Fields 172 (2018), 387-452. · Zbl 1442.11125
[26] N. Ng, The distribution of the summatory function of the Möbius function, Proc. London Math. Soc. (3) 89 (2004), 361-389. · Zbl 1138.11341
[27] H. Queffélec, H. Bohr’s vision of ordinary Dirichlet series; old and new results, J. Anal. 3 (1995), 43-60. · Zbl 0881.11068
[28] H. Queffélec and M. Queffélec, Diophantine Approximation and Dirichlet Series, Harish-Chandra Research Inst. Lecture Notes 2, Hindustan Book Agency, New Delhi, 2013. · Zbl 1317.11001
[29] K. Soundararajan, Partial sums of the Möbius function, J. Reine Angew. Math. 631 (2009), 141-152. · Zbl 1184.11040
[30] M. W. Xu and D. Yang, Extreme values of Dirichlet polynomials with multiplicative coefficients, arXiv:2303.06739 (2023).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.