×

Moments of the Riemann zeta function on short intervals of the critical line. (English) Zbl 1497.11194

Summary: We show that as \(T\to\infty\), for all \(t\in[T,2T]\) outside of a set of measure \(\mathrm{o}(T)\), \[ \int_{-\log^\theta T}^{\log^\theta T}\left |\zeta\left(\frac{1}{2}+\mathrm{i}t+\mathrm{i}h\right)\right|^\beta \mathrm{d}h=(\log T)^{f_\theta(\beta)+\mathrm{o}(1)}, \] for some explicit exponent \(f_{\theta}(\beta)\), where \(\theta > -1\) and \(\beta > 0\). This proves an extended version of a conjecture of Y. V. Fyodorov and J. P. Keating [Philos. Trans. R. Soc. Lond., Ser. A, Math. Phys. Eng. Sci. 372, No. 2007, Article ID 20120503, 32 p. (2014; Zbl 1330.82028)]. In particular, it shows that, for all \(\theta > -1\), the moments exhibit a phase transition at a critical exponent \(\beta_c(\theta)\), below which \(f_{\theta}(\beta)\) is quadratic and above which \(f_{\theta}(\beta)\) is linear. The form of the exponent \(f_{\theta}\) also differs between mesoscopic intervals \((-1 < \theta < 0)\) and macroscopic intervals \((\theta > 0)\), a phenomenon that stems from an approximate tree structure for the correlations of zeta. We also prove that, for all \(t\in[T,2T]\) outside a set of measure \(o(T)\), \[ \max\limits_{|h|\leq\log^\theta T}\left|\left(\frac{1}{2}+\mathrm{i}t+\mathrm{i}h\right)\right|=(\log t)^{m(\theta)+\mathrm{o}(1)}, \] for some explicit \[m(\theta )\]. This generalizes earlier results of J. Najnudel [Probab. Theory Relat. Fields 172, No. 1–2, 387–452 (2018; Zbl 1442.11125)] and L.-P. Arguin et al. [Commun. Pure Appl. Math. 72, No. 3, 500–535 (2019; Zbl 1443.11161)] for \[\theta =0\]. The proofs are unconditional, except for the upper bounds when \(\theta > 3\), where the Riemann hypothesis is assumed.

MSC:

11M06 \(\zeta (s)\) and \(L(s, \chi)\)
60G70 Extreme value theory; extremal stochastic processes
60F10 Large deviations
60G60 Random fields

References:

[1] Arguin, L.-P., Belius, D. and Bourgade, P. (2017). Maximum of the characteristic polynomial of random unitary matrices. Comm. Math. Phys. 349 703-751. · Zbl 1371.15036 · doi:10.1007/s00220-016-2740-6
[2] Arguin, L.-P., Belius, D. and Harper, A. J. (2017). Maxima of a randomized Riemann zeta function, and branching random walks. Ann. Appl. Probab. 27 178-215. · Zbl 1362.60050 · doi:10.1214/16-AAP1201
[3] Arguin, L. P., Bourgade, P. and RadziwiŁŁ, M. (2020). The Fyodorov-Hiary-Keating conjecture I. 1-49. Preprint. Available at arXiv:2007.00988.
[4] Arguin, L. P., Dubach, G. and Hartung, L. (2021). Maxima of a random model of the Riemann zeta function over intervals of varying length. 1-26. Preprint. Available at arXiv:2103.04817.
[5] Arguin, L.-P. and Ouimet, F. (2019). Large deviations and continuity estimates for the derivative of a random model of \[\log |\zeta |\] on the critical line. J. Math. Anal. Appl. 472 687-695. · Zbl 1478.60096 · doi:10.1016/j.jmaa.2018.11.044
[6] Arguin, L. P. and Tai, W. (2019). Is the Riemann zeta function in a short interval a 1-RSB spin glass? In Sojourns in Probability Theory and Statistical Physics—I. Springer Proceedings in Mathematics & Statistics 63-88. Springer, Singapore. · Zbl 1429.60003 · doi:10.1007/978-981-15-0294-1
[7] Arguin, L.-P., Belius, D., Bourgade, P., RadziwiŁŁ, M. and Soundararajan, K. (2019). Maximum of the Riemann zeta function on a short interval of the critical line. Comm. Pure Appl. Math. 72 500-535. · Zbl 1443.11161 · doi:10.1002/cpa.21791
[8] Bailey, E. C. and Keating, J. P. (2019). On the moments of the moments of the characteristic polynomials of random unitary matrices. Comm. Math. Phys. 371 689-726. · Zbl 1423.60013 · doi:10.1007/s00220-019-03503-7
[9] Bettin, S., Chandee, V. and RadziwiŁŁ, M. (2017). The mean square of the product of the Riemann zeta-function with Dirichlet polynomials. J. Reine Angew. Math. 729 51-79. · Zbl 1378.11083 · doi:10.1515/crelle-2014-0133
[10] Bondarenko, A. and Seip, K. (2017). Large greatest common divisor sums and extreme values of the Riemann zeta function. Duke Math. J. 166 1685-1701. · Zbl 1394.11063 · doi:10.1215/00127094-0000005X
[11] Bourgade, P. (2010). Mesoscopic fluctuations of the zeta zeros. Probab. Theory Related Fields 148 479-500. · Zbl 1250.11080 · doi:10.1007/s00440-009-0237-3
[12] Bourgain, J. (2017). Decoupling, exponential sums and the Riemann zeta function. J. Amer. Math. Soc. 30 205-224. · Zbl 1352.11065 · doi:10.1090/jams/860
[13] Bovier, A. (2006). Statistical Mechanics of Disordered Systems: A Mathematical Perspective. Cambridge Series in Statistical and Probabilistic Mathematics 18. Cambridge Univ. Press, Cambridge. · Zbl 1246.82001 · doi:10.1017/CBO9780511616808
[14] Bovier, A. (2017). Gaussian Processes on Trees: From Spin Glasses to Branching Brownian Motion. Cambridge Studies in Advanced Mathematics 163. Cambridge Univ. Press, Cambridge. · Zbl 1378.60004 · doi:10.1017/9781316675779
[15] Bovier, A. and Hartung, L. (2020). From 1 to 6: A finer analysis of perturbed branching Brownian motion. Comm. Pure Appl. Math. 73 1490-1525. · Zbl 1445.60060 · doi:10.1002/cpa.21893
[16] Bovier, A. and Kurkova, I. (2004). Derrida’s generalized random energy models. II. Models with continuous hierarchies. Ann. Inst. Henri Poincaré Probab. Stat. 40 481-495. · Zbl 1121.82021 · doi:10.1016/j.anihpb.2003.09.003
[17] Chandee, V. and Soundararajan, K. (2011). Bounding \[|\zeta (\frac{1}{2}+it)|\] on the Riemann hypothesis. Bull. Lond. Math. Soc. 43 243-250. · Zbl 1238.11078 · doi:10.1112/blms/bdq095
[18] Chhaibi, R., Madaule, T. and Najnudel, J. (2018). On the maximum of the \[\text{C}\beta \text{E}\] field. Duke Math. J. 167 2243-2345. · Zbl 1457.60008 · doi:10.1215/00127094-2018-0016
[19] Derrida, B. (1981). Random-energy model: An exactly solvable model of disordered systems. Phys. Rev. B (3) 24 2613-2626. · Zbl 1323.60134 · doi:10.1103/physrevb.24.2613
[20] de la Bretèche, R. and Tenenbaum, G. (2019). Sommes de Gál et applications. Proc. Lond. Math. Soc. (3) 119 104-134. · Zbl 1458.11141 · doi:10.1112/plms.12224
[21] Farmer, D. W., Gonek, S. M. and Hughes, C. P. (2007). The maximum size of \(L\)-functions. J. Reine Angew. Math. 609 215-236. · Zbl 1234.11109 · doi:10.1515/CRELLE.2007.064
[22] Fyodorov, Y. V. and Bouchaud, J.-P. (2008). Freezing and extreme-value statistics in a random energy model with logarithmically correlated potential. J. Phys. A 41 372001, 12. · Zbl 1214.82016 · doi:10.1088/1751-8113/41/37/372001
[23] Fyodorov, Y. V., Gnutzmann, S. and Keating, J. P. (2018). Extreme values of CUE characteristic polynomials: A numerical study. J. Phys. A 51 464001, 22. · Zbl 1411.15026 · doi:10.1088/1751-8121/aae65a
[24] Fyodorov, Y. V., Hiary, G. A. and Keating, J. P. (2012). Freezing transition, characteristic polynomials of random matrices, and the Riemann zeta-function. Phys. Rev. Lett. 108 1-4. · doi:10.1103/PhysRevLett.108.170601
[25] Fyodorov, Y. V. and Keating, J. P. (2014). Freezing transitions and extreme values: Random matrix theory, and disordered landscapes. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 372 20120503, 32. · Zbl 1330.82028 · doi:10.1098/rsta.2012.0503
[26] Gabriel, R. M. (1927). Some Results Concerning the Integrals of Moduli of Regular Functions Along Certain Curves. J. Lond. Math. Soc. 2 112-117. · JFM 53.0306.01 · doi:10.1112/jlms/s1-2.2.112
[27] Harper, A. J. (2013a). Sharp conditional bounds for moments of the Riemann zeta function. 1-20. Preprint. Available at arXiv:1305.4618.
[28] Harper, A. J. (2013b). A note on the maximum of the Riemann zeta function, and log-correlated random variables. 1-26. Preprint. Available at arXiv:1304.0677.
[29] Harper, A. (2019). On the partition function of the Riemann zeta function, and the Fyodorov-Hiary-Keating conjecture. 1-40. Preprint. Available at arXiv:1906.05783.
[30] Heap, W., RadziwiŁŁ, M. and Soundararajan, K. (2019). Sharp upper bounds for fractional moments of the Riemann zeta function. Q. J. Math. 70 1387-1396. · Zbl 1469.11290 · doi:10.1093/qmathj/haz027
[31] Heath-Brown, D. R. (1981). Fractional moments of the Riemann zeta function. J. Lond. Math. Soc. (2) 24 65-78. · Zbl 0431.10024 · doi:10.1112/jlms/s2-24.1.65
[32] Ingham, A. E. (1927). Mean-Value Theorems in the Theory of the Riemann Zeta-Function. Proc. Lond. Math. Soc. (2) 27 273-300. · JFM 53.0313.01 · doi:10.1112/plms/s2-27.1.273
[33] Iwaniec, H. and Sarnak, P. (2000). Perspectives on the analytic theory of \(L\)-functions. 705-741. Geom. Funct. Anal., Special Volume, Part II, GAFA 2000 (Tel Aviv, 1999). · Zbl 0996.11036 · doi:10.1007/978-3-0346-0425-3_6
[34] Keating, J. P. and Snaith, N. C. (2000). Random matrix theory and \[\zeta (1/2+it)\]. Comm. Math. Phys. 214 57-89. · Zbl 1051.11048 · doi:10.1007/s002200000261
[35] Kistler, N. (2015). Derrida’s random energy models. From spin glasses to the extremes of correlated random fields. In Correlated Random Systems: Five Different Methods. Lecture Notes in Math. 2143 71-120. Springer, Cham. · Zbl 1338.60231 · doi:10.1007/978-3-319-17674-1_3
[36] Kistler, N. and Schmidt, M. A. (2015). From Derrida’s random energy model to branching random walks: From 1 to 3. Electron. Commun. Probab. 20 no. 47, 12. · Zbl 1321.60111 · doi:10.1214/ecp.v20-4189
[37] Michel, P. and Venkatesh, A. (2010). The subconvexity problem for \[{\text{GL}_2} \]. Publ. Math. Inst. Hautes Études Sci. 111 171-271. · Zbl 1376.11040 · doi:10.1007/s10240-010-0025-8
[38] Najnudel, J. (2018). On the extreme values of the Riemann zeta function on random intervals of the critical line. Probab. Theory Related Fields 172 387-452. · Zbl 1442.11125 · doi:10.1007/s00440-017-0812-y
[39] Nikula, M., Saksman, E. and Webb, C. (2020). Multiplicative chaos and the characteristic polynomial of the CUE: The \[{L^1}\]-phase. Trans. Amer. Math. Soc. 373 3905-3965. · Zbl 1441.60008 · doi:10.1090/tran/8020
[40] Ouimet, F. (2018). Poisson-Dirichlet statistics for the extremes of a randomized Riemann zeta function. Electron. Commun. Probab. 23 Paper No. 46, 15. · Zbl 1422.60036 · doi:10.1214/18-ECP154
[41] Paquette, E. and Zeitouni, O. (2018). The maximum of the CUE field. Int. Math. Res. Not. IMRN 2018 5028-5119. · Zbl 1407.60010 · doi:10.1093/imrn/rnx033
[42] RadziwiŁŁ, M. and Soundararajan, K. (2013). Continuous lower bounds for moments of zeta and \(L\)-functions. Mathematika 59 119-128. · Zbl 1273.11128 · doi:10.1112/S0025579312001088
[43] RadziwiŁŁ, M. and Soundararajan, K. (2017). Selberg’s central limit theorem for \[\log |\zeta (1/2+it)|\]. Enseign. Math. 63 1-19. · Zbl 1432.11117 · doi:10.4171/LEM/63-1/2-1
[44] Remy, G. (2020). The Fyodorov-Bouchaud formula and Liouville conformal field theory. Duke Math. J. 169 177-211. · Zbl 1465.60032 · doi:10.1215/00127094-2019-0045
[45] Rhodes, R. and Vargas, V. (2014). Gaussian multiplicative chaos and applications: A review. Probab. Surv. 11 315-392. · Zbl 1316.60073 · doi:10.1214/13-PS218
[46] Saksman, E. and Webb, C. (2016). Multiplicative chaos measures for a random model of the Riemann zeta function. 1-36. Preprint. Available at arXiv:1604.08378.
[47] Saksman, E. and Webb, C. (2020). The Riemann zeta function and Gaussian multiplicative chaos: Statistics on the critical line. Ann. Probab. 48 2680-2754. · Zbl 1469.60162 · doi:10.1214/20-AOP1433
[48] Selberg, A. (1946). Contributions to the theory of the Riemann zeta-function. Arch. Math. Naturvidensk. 48 89-155. · Zbl 0061.08402
[49] Selberg, A. (1992). Old and new conjectures and results about a class of Dirichlet series. In Proceedings of the Amalfi Conference on Analytic Number Theory (Maiori, 1989) 367-385. Univ. Salerno, Salerno. · Zbl 0787.11037
[50] Soundararajan, K. (2009). Moments of the Riemann zeta function. Ann. of Math. (2) 170 981-993. · Zbl 1251.11058 · doi:10.4007/annals.2009.170.981
[51] Titchmarsh, E. C. (1986). The Theory of the Riemann Zeta-Function, 2nd ed. The Clarendon Press, Oxford University Press, New York. Edited and with a preface by D. R. Heath-Brown. · Zbl 0601.10026
[52] Venkatesh, A. (2010). Sparse equidistribution problems, period bounds and subconvexity. Ann. of Math. (2) 172 989-1094. · Zbl 1214.11051 · doi:10.4007/annals.2010.172.989
[53] Webb, C. (2015). The characteristic polynomial of a random unitary matrix and Gaussian multiplicative chaos—the \[{L^2}\]-phase. Electron. J. Probab. 20 no. 104, 21 · Zbl 1328.15052 · doi:10.1214/EJP.v20-4296
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.