×

Braided open book decompositions in \(S^{3}\). (English) Zbl 1539.57003

Open books are an important topic in low dimensional topology and play an important role in the study of geometry and topology of \(3\)-manifolds. In the paper under review, the author studies four different ways in which an open book decomposition of the 3-sphere can be defined to be braided. These include generalised exchangeability defined by H. R. Morton and M. Rampichini [Ser. Knots Everything 24, 335–346 (2000; Zbl 0998.57014)] and mutual braiding defined by L. Rudolph [Contemp. Math. 78, 657–673 (1988; Zbl 0669.57004)], which were shown to be equivalent by M. Rampichini [J. Knot Theory Ramifications 10, No. 5, 739–761 (2001; Zbl 1002.57016)], as well as P-fiberedness and a property related to simple branched covers of \(S^{3}\) inspired by work of J. M. Montesinos-Amilibia and H. R. Morton [Proc. Lond. Math. Soc. (3) 62, No. 1, 167–201 (1991; Zbl 0673.57010)]. The author proves that these four notions of a braided open book are actually all equivalent to each other, and shows that all open books in the 3-sphere whose bindings have braid index of at most 3 can be braided in this sense. Also, the author relates his findings to a conjecture on real algebraic links by R. Benedetti and M. Shiota [Boll. Unione Mat. Ital., Sez. B, Artic. Ric. Mat. (8) 1, No. 3, 585–609 (1998; Zbl 0910.57010)] and to a stronger version of Harer’s conjecture due to Montesinos and Morton [loc. cit.].
Reviewer: Kun Du (Lanzhou)

MSC:

57K10 Knot theory
57K35 Other geometric structures on 3-manifolds
14P25 Topology of real algebraic varieties
32S55 Milnor fibration; relations with knot theory

References:

[1] is still an open question if every fibered link is the binding of a braided open book. However, the equivalence between the different definitions allows us to translate results about one type of braiding to another. This way we can for example prove that a braid is P-fibered if it is generalised exchangeable and vice versa. Examples of this occur for example in Corollary 6.1 and Corollary 6.2. It also results in new techniques that allow us to prove that certain open books can be braided, compare Section 6.2. The connections to the Benedetti-Shiota conjecture on real algebraic links (Conjec-ture 2.23) and Montesino’s and Morton’s stronger version of Harer’s conjecture (Con-
[2] Since some of the definitions of a braided open book have natural generalizations to 3-manifolds that are not necessarily S 3 , future research should also investigate these
[3] Alexander, J. W.: A lemma on systems of knotted curves. Proc. Natl. Acad. Sci. USA 9 (1923), 93-95. · JFM 49.0408.03 · doi:10.1073/pnas.9.3.93
[4] Beardon, A. F., Carne, T. K. and Ng, T. W.: The critical values of a polynomial. Constr. Approx. 18 (2002), no. 3, 343-354. · Zbl 1018.30003 · doi:10.1007/s00365-002-0506-1
[5] Benedetti, R. and Shiota, M.: On real algebraic links in S 3 . Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8) 1 (1998), no. 3, 585-609. · Zbl 0910.57010
[6] Bennequin, D.: Entrelacements et équations de Pfaff. In Third Schnepfenried geometry con-ference, Vol. 1 (Schnepfenried, 1982), pp. 87-161. Astérisque 107, Soc. Math. France, Paris, 1983. · Zbl 0573.58022
[7] Birman, J. S.: A representation theorem for fibered knots and their monodromy maps. In Topology of low-dimensional manifolds (Proc. Second Sussex Conf., Chelwood Gate, 1977), pp. 1-8. Lecture Notes in Math. 722, Springer, Berlin, 1979. · Zbl 0406.57004 · doi:10.1007/bfb0063183
[8] Birman, J. S., Ko, K. H. and Lee, S. J.: A new approach to the word and conjugacy problems in the braid groups. Adv. Math. 139 (1998), no. 2, 322-353. · Zbl 0937.20016 · doi:10.1006/aima.1998.1761
[9] Birman, J. S. and Menasco, W. W.: Studying links via closed braids. IV. Composite links and split links. Invent. Math. 102 (1990), no. 1, 115-139. · Zbl 0711.57006 · doi:10.1007/BF01233423
[10] Birman, J. S. and Menasco, W. W.: Studying links via closed braids. II. On a theorem of Ben-nequin. Topology Appl. 40 (1991), no. 1, 71-82. · Zbl 0722.57001 · doi:10.1016/0166-8641(91)90059-U
[11] Birman, J. S. and Menasco, W. W.: Studying links via closed braids. I: A finiteness theorem. Pacific J. Math. 154 (1992), no. 1, 17-36. · Zbl 0724.57001 · doi:10.2140/pjm.1992.154.17
[12] Bode, B.: Real algebraic links in S 3 and simple branched covers. In Intelligence of Low-Dimensional Topology 2019, Conference Proceedings, pp. 13-28. RIMS Kokyuroku 2129, RIMS, 2019.
[13] Bode, B.: Constructing links of isolated singularities of polynomials R 4 ! R 2 . J. Knot Theory Ramifications 28 (2019), no. 1, article no. 1950009, 21 pp. · Zbl 1411.57009 · doi:10.1142/S0218216519500093
[14] Bode, B.: Real algebraic links in S 3 and braid group actions on the set of n-adic integers. J. Knot Theory Ramifications 29 (2020), no. 6, 2050039, 44. · Zbl 1452.57004 · doi:10.1142/S021821652050039X
[15] Bode, B.: Closures of T-homogeneous braids are real algebraic. Preprint 2022, arXiv: 2211.15394.
[16] Bode, B.: Twisting and satellite operations on P-fibered braids. To appear in Commun. Anal. Geom.
[17] Bode, B. and Dennis, M. R.: Constructing a polynomial whose nodal set is any prescribed knot or link. J. Knot Theory Ramifications 28 (2019), no. 1, article no. 1850082, 31 pp. · Zbl 1411.57010 · doi:10.1142/S0218216518500827
[18] Bode, B., Dennis, M. R., Foster, D. and King, R. P.: Knotted fields and explicit fibrations for lemniscate knots. Proc. R. Soc. Lond. A, Math. Phys. Eng. Sci. 473 (2017), no. 2202, article no. 20160829, 22 pp. · Zbl 1402.57006 · doi:10.1098/rspa.2016.0829
[19] Cromwell, P. R.: Homogeneous links. J. London Math. Soc. (2) 39 (1989), no. 3, 535-552. · Zbl 0685.57004 · doi:10.1112/jlms/s2-39.3.535
[20] El Marraki, M., Hanusse, N., Zipperer, J. and Zvonkin, A.: Cacti, braids and complex polyno-mials. Sém. Lothar. Combin. 37 (1996), Art. B37b, 36 pp. · Zbl 0976.57004
[21] Etnyre, J. B.: Lectures on open book decompositions and contact structures. In Floer homo-logy, gauge theory, and low-dimensional topology, pp. 103-141. Clay Math. Proc. 5, American Mathematical Society, Providence, RI, 2006. · Zbl 1108.53050
[22] Gabai, D.: Detecting fibred links in S 3 . Comment. Math. Helv. 61 (1986), no. 4, 519-555. · Zbl 0621.57003 · doi:10.1007/BF02621931
[23] Giroux, E.: Géométrie de contact: de la dimension trois vers les dimensions supérieures. In Proceedings of the International Congress of Mathematicians, Vol. II (Beijing, 2002), pp. 405-414. Higher Ed. Press, Beijing, 2002. · Zbl 1015.53049
[24] Giroux, E. and Goodman, N.: On the stable equivalence of open books in three-manifolds. Geom. Topol. 10 (2006), 97-114. · Zbl 1100.57013 · doi:10.2140/gt.2006.10.97
[25] Goldsmith, D. L.: Symmetric fibered links. In Knots, groups, and 3-manifolds (Papers dedic-ated to the memory of R. H. Fox), pp. 3-23. Ann. of Math. Studies 84, Princeton Univeristy Press, Princeton, NJ, 1975. · Zbl 0331.55001 · doi:10.1515/9781400881512-003
[26] Goulden, I. P. and Jackson, D. M.: The combinatorial relationship between trees, cacti and certain connection coefficients for the symmetric group. European J. Combin. 13 (1992), no. 5, 357-365. · Zbl 0804.05023 · doi:10.1016/S0195-6698(05)80015-0
[27] Harer, J.: How to construct all fibered knots and links. Topology 21 (1982), no. 3, 263-280. · Zbl 0504.57002 · doi:10.1016/0040-9383(82)90009-X
[28] Hilden, H. M. and Montesinos, J. M.: Lifting surgeries to branched covering spaces. Trans. Amer. Math. Soc. 259 (1980), no. 1, 157-165. · Zbl 0448.57016 · doi:10.2307/1998151
[29] Hirasawa, M. and Stoimenow, A.: Examples of knots without minimal string Bennequin sur-faces. Asian J. Math. 7 (2003), no. 3, 435-445. · Zbl 1062.57016 · doi:10.4310/AJM.2003.v7.n3.a6
[30] Ito, T. and Kawamuro, K.: Open book foliation. Geom. Topol. 18 (2014), no. 3, 1581-1634. · Zbl 1303.57012 · doi:10.2140/gt.2014.18.1581
[31] Kadokami, T.: Amphicheiral links with special properties, II. J. Knot Theory Ramifications 21 (2012), no. 6, article no. 1250047, 15 pp. · Zbl 1260.57014 · doi:10.1142/S0218216511009996
[32] Kauffman, L. H. and Neumann, W. D.: Products of knots, branched fibrations and sums of singularities. Topology 16 (1977), no. 4, 369-393. · Zbl 0447.57012 · doi:10.1016/0040-9383(77)90042-8
[33] LaFountain, D. J. and Menasco, W. W.: Braid foliations in low-dimensional topology. Graduate Studies in Mathematics 185, American Mathematical Society, Providence, RI, 2017. · Zbl 1380.57001 · doi:10.1090/gsm/185
[34] Looijenga, E.: A note on polynomial isolated singularities. Nederl. Akad. Wetensch. Proc. Ser. A 74 (=Indag. Math. 33) (1971), 418-421. · Zbl 0234.57010 · doi:10.1016/S1385-7258(71)80049-5
[35] Melvin, P. M. and Morton, H. R.: Fibred knots of genus 2 formed by plumbing Hopf bands. J. London Math. Soc. (2) 34 (1986), no. 1, 159-168. · Zbl 0576.57008 · doi:10.1112/jlms/s2-34.1.159
[36] Milnor, J.: Singular points of complex hypersurfaces. Annals of Mathematics Studies 61, Prin-ceton University Press, Princeton, NJ; University of Tokyo Press, Tokyo, 1968. · Zbl 0184.48405
[37] Montesinos-Amilibia, J. M. and Morton, H. R.: Fibred links from closed braids. Proc. London Math. Soc. (3) 62 (1991), no. 1, 167-201. · Zbl 0673.57010 · doi:10.1112/plms/s3-62.1.167
[38] Morton, H. R.: Exchangeable braids. In Low-dimensional topology (Chelwood Gate, 1982), pp. 86-105. London Math. Soc. Lecture Note Ser. 95, Cambridge University Press, Cam-bridge, 1985, · Zbl 0574.57002 · doi:10.1017/CBO9780511662744.003
[39] Morton, H. R. and Rampichini, M.: Mutual braiding and the band presentation of braid groups. In Knots in Hellas ’98 (Delphi), pp. 335-346, Ser. Knots Everything 24, World Sci. Publ., River Edge, NJ, 2000. · Zbl 0998.57014 · doi:10.1142/9789812792679_0020
[40] Ni, Y.: Knot Floer homology detects fibred knots. Invent. Math. 170 (2007), no. 3, 577-608. · Zbl 1138.57031 · doi:10.1007/s00222-007-0075-9
[41] Perron, B.: Le noeud “huit” est algébrique réel. Invent. Math. 65 (1981/82), no. 3, 441-451. · Zbl 0503.57003 · doi:10.1007/BF01396628
[42] Pichon, A.: Real analytic germs f g and open-book decompositions of the 3-sphere. Internat. J. Math. 16 (2005), no. 1, 1-12. · Zbl 1075.14033 · doi:10.1142/S0129167X05002710
[43] Rampichini, M.: Mutually braided links, films and exchangeability. J. Knot Theory Ramifica-tions 10 (2001), no. 5, 739-761. · Zbl 1002.57016 · doi:10.1142/S0218216501001128
[44] Rolfsen, D.: Knots and links. Mathematics Lecture Series 7, Publish or Perish, Inc., Berkeley, Calif., 1976. · Zbl 0339.55004
[45] Rudolph, L.: Braided surfaces and Seifert ribbons for closed braids. Comment. Math. Helv. 58 (1983), no. 1, 1-37. · Zbl 0522.57017 · doi:10.1007/BF02564622
[46] Rudolph, L.: Constructions of quasipositive knots and links. I. In Knots, braids and singular-ities (Plans-sur-Bex, 1982), pp. 233-245. Monogr. Enseign. Math. 31, L’Enseignement Math., Université de Genève, Genève, 1983. · Zbl 0557.57002
[47] Rudolph, L.: Isolated critical points of mappings from R 4 to R 2 and a natural splitting of the Milnor number of a classical fibered link. I. Basic theory; examples. Comment. Math. Helv. 62 (1987), no. 4, 630-645. · Zbl 0626.57020 · doi:10.1007/BF02564467
[48] Rudolph, L.: Isolated critical points of maps from R 4 to R 2 and a natural splitting of the Milnor number of a classical fibred link. II. In Geometry and topology (Athens, Ga., 1985), pp. 251-263. Lecture Notes in Pure and Appl. Math. 105, Dekker, New York, 1987. · Zbl 0626.57021 · doi:10.1201/9781003072386-20
[49] Rudolph, L.: Mutually braided open books and new invariants of fibered links. In Braids (Santa Cruz, CA, 1986), pp. 657-673. Contemp. Math. 78, American Mathematical Society, Provid-ence, RI, 1988. · Zbl 0669.57004 · doi:10.1090/conm/078/975100
[50] Stallings, J.: On fibering certain 3-manifolds. In Topology of 3-manifolds and related topics (Proceedings of the University of Georgia Institute, 1961), pp. 95-100. Prentice-Hall, Engle-wood Cliffs, NJ, 1962. · Zbl 1246.57049
[51] Stallings, J. R.: Constructions of fibred knots and links. In Algebraic and geometric topology (Proc. Sympos. Pure Math., Stanford Univ., Stanford, Calif., 1976), Part 2, pp. 55-60. Proc. Sympos. Pure Math. 32, American Mathematical Society, Providence, RI, 1978. · Zbl 0394.57007 · doi:10.1090/pspum/032.2/520522
[52] Stoimenow, A.: Exchangeability and non-conjugacy of braid representatives. Internat. J. Com-put. Geom. Appl. 31 (2021), no. 1, 39-73. · Zbl 1494.57012 · doi:10.1142/S0218195921500047
[53] Vogel, P.: Representation of links by braids: a new algorithm. Comment. Math. Helv. 65 (1990), no. 1, 104-113. · Zbl 0703.57004 · doi:10.1007/BF02566597
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.