×

Constructing a polynomial whose nodal set is any prescribed knot or link. (English) Zbl 1411.57010

Summary: We describe an algorithm that for every given braid \(B\) explicitly constructs a function \(f : \mathbb C^2 \rightarrow \mathbb C\) such that \(f\) is a polynomial in \(u\), \(v\) and \(\overline{v}\) and the zero level set of \(f\) on the unit three-sphere is the closure of \(B\). The nature of this construction allows us to prove certain properties of the constructed polynomials. In particular, we provide bounds on the degree of \(f\) in terms of braid data.

MSC:

57M25 Knots and links in the \(3\)-sphere (MSC2010)

References:

[1] Akbulut, S. and King, H. C., All knots are algebraic, Comment. Math. Helv.56 (1981) 339-351. · Zbl 0477.57018
[2] Alexander, J., A lemma on a system of knotted curves, Proc. Nat. Acad. Sci. USA9 (1923) 93-95. · JFM 49.0408.03
[3] Atkinson, K. E., An Introduction to Numerical Analysis, 2nd edn. (John Wiley and Sons, 1988).
[4] Beardon, A. F., Carne, T. K. and Ng, T. W., The critical values of a polynomial, Constr. Approx.18 (2002) 343-354. · Zbl 1018.30003
[5] M. Bell, The monodromies of homogeneous links, preprint (2012) arXiv:1207.0161.
[6] Björklund, J., Real algebraic knots of low degree, J. Knot Theory Ramification20 (2011) 1285. · Zbl 1226.57007
[7] Bochnak, J., Coste, M. and Roy, M.-F., Real Algebraic Geometry (Springer Verlag, Berlin Heidelberg, 1998). · Zbl 0633.14016
[8] Bode, B., Dennis, M. R., Foster, D. and King, R. P., Knotted fields and explicit fibrations for lemniscate knots, Proc. Roy. Soc. A75 (2017) 20160829. · Zbl 1402.57006
[9] Boileau, M. and Orevkov, S., Quasi-positivité d’une courbe analytique dans une boule pseudo-convexe, C. R. Acad. Sci. Paris332 (2001) 1-6. · Zbl 1020.32020
[10] Brauner, K., Zur Geometrie der Funktionen zweier komplexen Veränderlichen II, III, IV, Abh. Math. Sem. Hamburg6 (1928) 8-54.
[11] Brothers, N., Evans, S., Taalman, L., Van Wyk, L., Witzcak, D. and Yarnall, C., Spiral knots, Missouri J. Math. Sci.22 (2010) 10-18. · Zbl 1197.57004
[12] Burau, K., Kennzeichnung von Schlauchknoten, Abh. Math. Sem. Hamburg9 (1933) 125-133. · JFM 58.0615.01
[13] Burau, K., Kennzeichnung von Schlauchverkettungen, Abh. Math. Sem. Hamburg10 (1934) 285-297. · JFM 60.0525.02
[14] Dennis, M. R. and Bode, B., Constructing a polynomial whose nodal set is the three-twist knot \(5_2\), J. Phys. A50 (2017) 265204. · Zbl 1397.57008
[15] Dennis, M. R., King, R. P., Jack, B., O’Holleran, K. and Padgett, M. J., Isolated opitcal vortex knots, Nature Physs.6 (2010) 118-121.
[16] Edwards, R. D. and Kirby, R. C., Deformations of spaces of imbeddings, Ann. Math. (2nd Series)93 (1971) 63-88. · Zbl 0214.50303
[17] Ehresmann, C., Les connexions infinitésimales dans un espace fibré différentiable, Colloq. Topol.01 (1950) 29-55. · Zbl 0054.07201
[18] Eisenbud, D. and Neumann, W., Three-Dimensional Link Theory and Invariants of Plane Curve Singularities (Princeton University Press, 1985). · Zbl 0628.57002
[19] T. A. Gittings, Minimum braids: A complete invariant of knots and links, preprint (2004), arXiv:math.GT/0401051.
[20] Hutchings, M. and Lee, Y. J., Circle-valued Morse theory, Reidemeister torsion, and Seiberg-Witten invariants of 3-manifolds, Topology38(4) (1999) 861-888. · Zbl 0959.58015
[21] Kähler, E., Über die Verzweigung einer algebraischen Funktion zweier Veränderlichen in der Umgebung einer singulären Stelle, Math. Zeit.30 (1929) 188-204. · JFM 55.0805.04
[22] Kedia, H., Foster, D., Dennis, M. R. and Irvine, W. T. M., Weaving knotted vector fields with tunable helicity, Phys. Rev. Lett.117 (2016) 274501.
[23] Lê, D. T., Sur les noeuds algébriques, Comp. Math.25 (1972) 281-321. · Zbl 0245.14003
[24] Looijenga, E., A note on polynomial isolated singularities, Ind. Math. (Proc)74 (1971) 418-421. · Zbl 0234.57010
[25] Machon, T. and Alexander, G. P., Knotted defects in nematic liquid crystals, Phys. Rev. Lett.113 (2014) 027801.
[26] Mikhalkin, G. and Orevkov, S., Real algebraic knots and links of small degree, J. Knot. Theory Ramification25 (2016) 1642010. · Zbl 1375.14197
[27] Milnor, J. W., Singular Points of Complex Hypersurfaces (Princeton University Press, 1968). · Zbl 0184.48405
[28] A. Pazhitnov, L. Rudolph and L. K. Weber, The Morse-Novikov number for knots and links, Algebra i Analiz13 (2001) 105-118. Translation in St. Petersburg Math. J.13 (2002) 417-426. · Zbl 1006.57003
[29] Perron, B., Le nœud “huit” est algébrique réel, Invent. Math.65 (1982) 441-451. · Zbl 0503.57003
[30] Proment, D., Onorato, M. and Barenghi, C. F., Vortex knots in a Bose-Einstein condensate, Phys. Rev. E85(3) (2012) 036306.
[31] Rudolph, L., Isolated critical points of mappings from \(\mathbb{R}^4\) to \(\mathbb{R}^2\) and a natural splitting of the Milnor number of a classical fibred link : 1. Basic theory and examples, Comment. Math. Helv.62 (1987) 630-645. · Zbl 0626.57020
[32] L. Rudolph, Some knot theory of complex plane curves, preprint (2001) arXiv:math/0106058. · Zbl 0557.57001
[33] Rudolph, L., Knot theory of complex plane curves, in Handbook of Knot Theory, eds. Menasco, W. and Thistlewaite, M. (Elsevier Science, 2005), pp. 329-428. (Also at arXiv:math/0411115). · Zbl 1097.57012
[34] Stallings, J. R., Constructions of fibred knots and links, Proc. Sympos. Pure Math.32 (1978) 55-60. · Zbl 0394.57007
[35] Sutcliffe, P., Knots in the Skyrme-Faddeev model, Proc. R. Soc. A463 (2007) 3001-3020. · Zbl 1133.81053
[36] Zariski, O., On the topology of algebroid singularities, Amer. J. Math.54 (1932) 453-465. · JFM 58.0614.02
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.