×

Perturbed interpolation formulae and applications. (English) Zbl 1537.41001

From the Abstract: “We employ functional analysis techniques in order to deduce some versions of classical and recent interpolation results in Fourier analysis with perturbed nodes”.
For the ‘classical’ they refer to Kadec’s \(\frac{1}{4}\)-theorem for interpolation formulae in the Paley-Wiener space both in the real and complex case ([M. I. Kadets, Sov. Math., Dokl. 5, 559–561 (1964; Zbl 0196.42602); translation from Dokl. Akad. Nauk SSSR 155, 1253–1254 (1964)]) and for the ‘recent’ results to the papers [D. Radchenko and M. Viazovska, Publ. Math., Inst. Hautes Étud. Sci. 129, 51–81 (2019; Zbl 1455.11075)] and [H. Cohn et al., Ann. Math. (2) 185, No. 3, 1017–1033 (2017; Zbl 1370.52037)].
The layout of the paper is as follows:
§1. Introduction
(\(9\frac{1}{2}\) pages)
Contains the results in the form of 6 Theorems.
§2. Preliminaries
(\(3\frac{1}{2}\) pages)
Subsections: Band-limited functions, Modular forms and Functional analysis.
§3. Perturbed interpolation formulae for band-limited functions
(\(9\frac{1}{2}\) pages)
Subsections: Perturbed interpolation formulae for band-limited functions, From Shannon to Vaaler (the proof of Theorem 1.2), Perturbed interplation formulae with derivatives
§4. Perturbed Fourier interpolation on the real line
(\(14\) pages)
Contains the proofs of results (specifically Theorem 1.6).
§5. Applications of the main results and techniques
(\(15\) pages)
This long section contains the subsections Interpolation formulae perturbing the origin (with the proof of theorem 5.3), Uniqueness for small powers of integers, Annihilating pairs (proof of Theorem1.7), The Cohn-Kummer- Miller- Radchenko-Viazovska result and perturbed interpolation formulae with derivatives (proof of Theorem 5.11), Perturbed interpolation for odd functions.
§6. Comments and remarks
(\(6\) pages)
Addresses: Asymmetric perturbations, Maximal perturbed interpolation formulae for band-limited functions, Theorem 1.6 and optimal decay rates for interpolating functions and maximal perturbations.
References
(\(41\) items)
This paper brings the reader to the edge of research on Fourier analysis with perturbed nodes.

MSC:

41A05 Interpolation in approximation theory
42A38 Fourier and Fourier-Stieltjes transforms and other transforms of Fourier type
46E39 Sobolev (and similar kinds of) spaces of functions of discrete variables
11F30 Fourier coefficients of automorphic forms

References:

[1] 10.1016/0022-1236(77)90056-8 · Zbl 0355.42015 · doi:10.1016/0022-1236(77)90056-8
[2] 10.1016/0022-247X(85)90140-4 · Zbl 0576.42016 · doi:10.1016/0022-247X(85)90140-4
[3] ; Berndt, Bruce C.; Knopp, Marvin I., Hecke’s theory of modular forms and Dirichlet series. Monogr. Number Theory, 5 (2008) · Zbl 1202.11030
[4] 10.1007/s00365-022-09599-w · Zbl 1528.11076 · doi:10.1007/s00365-022-09599-w
[5] 10.5802/aif.2552 · Zbl 1298.11105 · doi:10.5802/aif.2552
[6] 10.1007/978-0-387-70914-7 · doi:10.1007/978-0-387-70914-7
[7] 10.1090/S0002-9947-2013-05716-9 · Zbl 1276.41018 · doi:10.1090/S0002-9947-2013-05716-9
[8] 10.1007/978-3-642-52244-4 · doi:10.1007/978-3-642-52244-4
[9] 10.1090/S0002-9939-96-03291-1 · Zbl 0871.46018 · doi:10.1090/S0002-9939-96-03291-1
[10] 10.1007/s00222-019-00875-4 · Zbl 1422.42010 · doi:10.1007/s00222-019-00875-4
[11] 10.1090/mcom/3662 · Zbl 07446423 · doi:10.1090/mcom/3662
[12] 10.4007/annals.2017.185.3.8 · Zbl 1370.52037 · doi:10.4007/annals.2017.185.3.8
[13] 10.4007/annals.2022.196.3.3 · Zbl 1509.11061 · doi:10.4007/annals.2022.196.3.3
[14] 10.1090/tran6672 · Zbl 1367.46025 · doi:10.1090/tran6672
[15] 10.1016/j.jmaa.2017.02.030 · Zbl 1373.33018 · doi:10.1016/j.jmaa.2017.02.030
[16] 10.1007/s12220-020-00519-7 · Zbl 1469.42015 · doi:10.1007/s12220-020-00519-7
[17] 10.19086/da.84266 · doi:10.19086/da.84266
[18] 10.1007/978-1-4612-0497-8 · doi:10.1007/978-1-4612-0497-8
[19] ; Kadec, M. I., The exact value of the Paley-Wiener constant, Dokl. Akad. Nauk SSSR, 155, 6, 1253 (1964) · Zbl 0196.42602
[20] 10.1063/5.0012286 · Zbl 1459.05177 · doi:10.1063/5.0012286
[21] 10.1016/j.crma.2013.09.007 · Zbl 1293.28001 · doi:10.1016/j.crma.2013.09.007
[22] 10.1007/s00222-014-0542-z · Zbl 1402.28002 · doi:10.1007/s00222-014-0542-z
[23] 10.1090/S0002-9947-06-04121-3 · Zbl 1091.42002 · doi:10.1090/S0002-9947-06-04121-3
[24] 10.1090/S0894-0347-02-00397-1 · Zbl 1017.46018 · doi:10.1090/S0894-0347-02-00397-1
[25] 10.4171/RMI/962 · Zbl 1384.42009 · doi:10.4171/RMI/962
[26] ; Nazarov, F. L., Local estimates for exponential polynomials and their applications to inequalities of the uncertainty principle type, Algebra i Analiz, 5, 4, 3 (1993) · Zbl 0822.42001
[27] 10.2307/3062132 · Zbl 1015.42023 · doi:10.2307/3062132
[28] 10.1090/coll/019 · doi:10.1090/coll/019
[29] 10.1007/s10240-018-0101-z · Zbl 1455.11075 · doi:10.1007/s10240-018-0101-z
[30] 10.4171/jems/1194 · Zbl 1504.42014 · doi:10.4171/jems/1194
[31] ; Schechter, Martin, Basic theory of Fredholm operators, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3), 21, 2, 261 (1967) · Zbl 0145.39105
[32] 10.1109/JRPROC.1949.232969 · doi:10.1109/JRPROC.1949.232969
[33] 10.1090/tran/8440 · Zbl 1475.42004 · doi:10.1090/tran/8440
[34] 10.1090/S0273-0979-1985-15349-2 · Zbl 0575.42003 · doi:10.1090/S0273-0979-1985-15349-2
[35] 10.4007/annals.2017.185.3.7 · Zbl 1373.52025 · doi:10.4007/annals.2017.185.3.7
[36] 10.1017/S0370164600017806 · JFM 45.1275.02 · doi:10.1017/S0370164600017806
[37] ; Young, Robert M., An introduction to nonharmonic Fourier series. Pure Appl. Math., 93 (1980) · Zbl 0493.42001
[38] 10.1007/978-3-540-74119-0_1 · Zbl 1259.11042 · doi:10.1007/978-3-540-74119-0\_1
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.