×

The Heisenberg principle and positive functions. (Principe d’Heisenberg et fonctions positives.) (French. English summary) Zbl 1298.11105

The authors consider Fourier couples \((f,\hat{f})\) on \({\mathbb R}^d\) satisfying the conditions: \(f\), \(\hat{f}\) are real, even an not identical zero; \(f(0)\leq 0\) and \(\hat{f}\leq 0\); \(f(x)\geq 0\) for \(\parallel x\parallel\geq a_f\), \(\hat{f}(y)\geq 0\) for \(\parallel y\parallel\geq a_{\hat{f}}\). Let \[ A(f)=\inf\{r>0:f(x)\geq 0,\parallel x\parallel>r\} \] and \[ B_d=\inf A(f)A(\hat{f}). \] The authors prove that \[ B_d\geq \frac{1}{\pi}\Big(\frac 12\Gamma\Big(\frac d2+1\Big)\Big)^{\frac 2d}>\frac{d}{2\pi e}. \] Let \({\mathcal B}_d\) be the constant arising considering only functions in the Schwartz space \({\mathcal S}({\mathbb R}^d)\). Then \[ B_d\leq {\mathcal B}_d\leq\frac{d+2}{2\pi},B_d\geq \frac 12{\mathcal B}_d. \] Suppose that there exists a number field \(F\) of degree \(d\) and discriminant \(D\) such that \(\zeta_F(s)\) has a zero in \((0,1)\). Then \[ {\mathcal B}_d\geq d|D|^{-\frac 1d}. \] If \(d\) is a multiple of \(48\), then \({\mathcal B}_d>0 \).

MSC:

11R42 Zeta functions and \(L\)-functions of number fields
42A38 Fourier and Fourier-Stieltjes transforms and other transforms of Fourier type
42B10 Fourier and Fourier-Stieltjes transforms and other transforms of Fourier type

References:

[1] Armitage, J. V., Zeta Functions with a zero at \(s={1\over 2}\), Inv. Math., 15, 199-205 (1972) · Zbl 0233.12006 · doi:10.1007/BF01404125
[2] Landau, E., Ueber die Klassenzahl imaginaer-quadratischer Zahlkoerper, Goettingen Nachr., 285-295 (1918) · JFM 46.0258.04
[3] Odlyzko, A. M., Lower bounds for discriminants of number fields II, Tôhoku Math. J., 29, 209-216 (1977) · Zbl 0362.12005 · doi:10.2748/tmj/1178240652
[4] Roquette, P.; Cassels et Fröhlich, Algebraic Number Theory, 231-249 (1967) · Zbl 1492.11153
[5] Serre, J.-P., Conducteurs d’Artin des caractères réels, Inv. Math., 14, 173-183 (1971) · Zbl 0229.13006 · doi:10.1007/BF01418887
[6] Tate, J.; Cassels et Fröhlich, Algebraic Number Theory, 305-347 (1967) · Zbl 1492.11154
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.