×

Spherical Heron triangles and elliptic curves. (English) Zbl 1534.11086

Problem D21 in R. K. Guy’s book [Am. Math. Mon. 102, No. 9, 771–781 (1995; Zbl 0847.11031)] is an example of the “rationality” of triangles, and it asks whether there is a triangle such that the area, the sides, and the medians have rational values. Introduced in [R. Hartshorne and R. Van Luijk, Math. Intell. 30, No. 4, 4–10 (2008; Zbl 1227.14039)] is the idea of the rationality of hyperbolic triangles, and two of the authors of the paper under review studied in [J. Laflamme and M. Lalín, J. Number Theory 222, 48–74 (2021; Zbl 1475.11114)] various rationality problems of hyperbolic triangles. The paper under review concerns the rationality of “proper” triangles on the unit sphere, which are called spherical (proper) triangles.
Let \(x\) represent a side length, an angle, or the area of a spherical triangle. If \(\{\cos(x),\sin(x)\}\subset\mathbb Q\), then the side, the angle, or the area is called rational. Via the parametrization \(\cos(x)=(1-t^2)/(1+t^2)\) and \(\sin(x)=2t/(1+t^2)\), we have \(t=\sin(x)/(1 +\cos(x))\), and \(t\) may be called the side, angle, or area parameter. By the Gauss-Bonnet theorem, if the angles are rational, then the area is rational, and if all sides and angles are rational, it is called a spherical Heron triangle. Firstly, the authors prove the existence of various spherical Heron triangles: For all but finitely many pairs of rational sides, there are infinitely many spherical Heron triangles with the two rational sides.
Secondly, the authors prove the following version of the congruent number problem for spherical Heron right triangles: Let \(m\) be a rational area parameter \(\not\in\{0,-1\}\). If \(m\ne 1\), then there are infinitely many spherical Heron right triangles with area \(A\) such that \(m=\sin(A)/(1+\cos(A))\). If \(m=1\), then there is only one such spherical Heron right triangle. This is proved via making a connection to the elliptic curve given by \(y^2=x(x - 2m(m^2+1))(x - 4 m (m^2+1))\).
Considered also in the paper are an affirmative answer to the Problem D21 for spherical Heron triangles, and examples of the rationality of various cevians of spherical Heron triangles such as medians, angle/area-bisectors, and heights.

MSC:

11G05 Elliptic curves over global fields
14J27 Elliptic surfaces, elliptic or Calabi-Yau fibrations
14J28 \(K3\) surfaces and Enriques surfaces
14H52 Elliptic curves
11D25 Cubic and quartic Diophantine equations

Software:

QCI

References:

[1] Balakrishnan, Jennifer S.; Dogra, Netan, Quadratic Chabauty and rational points, I: \(p\)-adic heights, Duke Math. J., 167, 11, 1981-2038 (2018) · Zbl 1401.14123 · doi:10.1215/00127094-2018-0013
[2] Beardon, Alan F.; Stephenson, Paul, The Heron parameters of a triangle, Math. Gaz., 99, 545, 205-212 (2015) · Zbl 1384.11054 · doi:10.1017/mag.2015.27
[3] Bianchi, Francesca, Quadratic Chabauty for (bi)elliptic curves and Kim’s conjecture, Algebra Number Theory, 14, 9, 2369-2416 (2020) · Zbl 1479.11113 · doi:10.2140/ant.2020.14.2369
[4] Bremner, Andrew, On Heron triangles, Ann. Math. Inform., 33, 15-21 (2006) · Zbl 1135.11315 · doi:10.1016/j.anucene.2005.07.008
[5] Brody, Nicolas; Schettler, Jordan, Rational hyperbolic triangles and a quartic model of elliptic curves, J. Number Theory, 164, 359-374 (2016) · Zbl 1416.11075 · doi:10.1016/j.jnt.2016.01.004
[6] Buchholz, Ralph H., On Triangles With Rational Altitudes, Angle Bisectors Or Medians (1989)
[7] Buchholz, Ralph H.; Rathbun, Randall L., An infinite set of Heron triangles with two rational medians, Am. Math. Mon., 104, 2, 107-115 (1997) · Zbl 0873.11022 · doi:10.2307/2974977
[8] Buchholz, Ralph H.; Rathbun, Randall L., Heron triangles and elliptic curves, Bull. Aust. Math. Soc., 58, 3, 411-421 (1998) · Zbl 0923.11052 · doi:10.1017/S0004972700032391
[9] Cassels, John W. S., Lectures on elliptic curves, 24, vi+137 p. pp. (1991), Cambridge University Press · Zbl 0752.14033 · doi:10.1017/CBO9781139172530
[10] Dujella, Andrej; Peral, Juan Carlos, Elliptic curves and triangles with three rational medians, J. Number Theory, 133, 6, 2083-2091 (2013) · Zbl 1271.11062 · doi:10.1016/j.jnt.2012.12.003
[11] Dujella, Andrej; Peral, Juan Carlos, Elliptic curves coming from Heron triangles, Rocky Mt. J. Math., 44, 4, 1145-1160 (2014) · Zbl 1305.14017 · doi:10.1216/RMJ-2014-44-4-1145
[12] Euler, Leonhard, Investigatio trianguli in quo distantiae angulorum ab eius centro gravitatis rationaliter exprimantur, Nova Acta Academiae Scientiarum Imperialis Petropolitanae, 12, 101-113 (1801)
[13] Flynn, E. Victor; Wetherell, Joseph L., Finding rational points on bielliptic genus 2 curves, Manuscr. Math., 100, 4, 519-533 (1999) · Zbl 1029.11024 · doi:10.1007/s002290050215
[14] Goins, Edray Herber; Maddox, Davin, Heron triangles via elliptic curves, Rocky Mt. J. Math., 36, 5, 1511-1526 (2006) · Zbl 1137.11039 · doi:10.1216/rmjm/1181069379
[15] Guy, Richard K., My favorite elliptic curve: a tale of two types of triangles, Am. Math. Mon., 102, 9, 771-781 (1995) · Zbl 0847.11031 · doi:10.2307/2974502
[16] Halbeisen, Lorenz; Hungerbühler, Norbert, Heron triangles and their elliptic curves, J. Number Theory, 213, 232-253 (2020) · Zbl 1450.11053 · doi:10.1016/j.jnt.2019.12.005
[17] Hartshorne, Robin; van Luijk, Ronald, Non-Euclidean Pythagorean triples, a problem of Euler, and rational points on \({K}3\) surfaces, Math. Intell., 30, 4, 4-10 (2008) · Zbl 1227.14039 · doi:10.1007/BF03038088
[18] Ionascu, Eugen J.; Luca, Florian; Stănică, Pantelimon, Heron triangles with two fixed sides, J. Number Theory, 126, 1, 52-67 (2007) · Zbl 1137.11023 · doi:10.1016/j.jnt.2006.12.004
[19] Ismail, Shahrina, Perfect triangles on the curve \({C}_4\), J. Aust. Math. Soc., 109, 1, 68-80 (2020) · Zbl 1456.11236 · doi:10.1017/s144678871900003x
[20] Izadi, Farzali; Nabardi, Kamran, A family of elliptic curves with rank \(\ge 5\), Period. Math. Hung., 71, 2, 243-249 (2015) · Zbl 1374.11068 · doi:10.1007/s10998-015-0102-3
[21] Kramer, Alpar-Vajk; Luca, Florian, Some remarks on Heron triangles, Acta Acad. Paedagog. Agriensis, Sect. Mat. (N.S.), 27, 25-38 (2000) · Zbl 1062.11019
[22] Laflamme, Jeanne; Lalín, Matilde, On Ceva points of (almost) equilateral triangles, J. Number Theory, 222, 48-74 (2021) · Zbl 1475.11114 · doi:10.1016/j.jnt.2020.12.007
[23] Lalín, Matilde; Mila, Olivier, Hyperbolic Heron triangles and elliptic curves, J. Number Theory, 240, 272-295 (2022) · Zbl 1497.11151 · doi:10.1016/j.jnt.2022.01.010
[24] van Luijk, Ronald, An elliptic \({K}3\) surface associated to Heron triangles, J. Number Theory, 123, 1, 92-119 (2007) · Zbl 1160.14029 · doi:10.1016/j.jnt.2006.06.006
[25] Mazur, Barry, Modular curves and the Eisenstein ideal, Publ. Math., Inst. Hautes Étud. Sci., 47, 33-186 (1977) · Zbl 0394.14008 · doi:10.1007/BF02684339
[26] Mazur, Barry, Rational isogenies of prime degree (with an appendix by D. Goldfeld), Invent. Math., 44, 2, 129-162 (1978) · Zbl 0386.14009 · doi:10.1007/BF01390348
[27] Miranda, Rick; Persson, Ulf, Torsion groups of elliptic surfaces, Compos. Math., 72, 3, 249-267 (1989) · Zbl 0717.14019
[28] Sastry, K. R. S., Heron triangles: a new perspective, Aust. Math. Soc. Gaz., 26, 4, 160-168 (1999) · Zbl 1126.11313
[29] Schütt, Matthias; Shioda, Tetsuji, Mordell-Weil lattices, 70, xvi+431 p. pp. (2019), Springer · Zbl 1433.14002 · doi:10.1007/978-981-32-9301-4
[30] Shioda, Tetsuji, On the Mordell-Weil lattices, Comment. Math. Univ. St. Pauli, 39, 2, 211-240 (1990) · Zbl 0725.14017
[31] Silverman, Joseph H., Advanced topics in the arithmetic of elliptic curves, 151, xiv+525 p. pp. (1994), Springer · Zbl 0911.14015 · doi:10.1007/978-1-4612-0851-8
[32] Skolem, Thoralf, Diophantische Gleichungen, 5 (1950), New Chelsea Publishing Company
[33] Stănică, Pantelimon; Sarkar, Santanu; Sen Gupta, Sourav; Maitra, Subhamoy; Kar, Nirupam, Counting Heron triangles with constraints, Integers, 13, 17 p. pp. (2013) · Zbl 1286.11041
[34] Todhunter, Isaac, Spherical Trigonometry (Fifth Edition) (1886), Macmillan & Co.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.