×

A comparison between Neumann and Steklov eigenvalues. (English) Zbl 1520.35108

Summary: This paper is devoted to a comparison between the normalized first (non-trivial) Neumann eigenvalue \(| \Omega | \mu_1 ( \Omega)\) for a Lipschitz open set \(\Omega \) in the plane and the normalized first (non-trivial) Steklov eigenvalue \(P (\Omega) \sigma_1 (\Omega)\). More precisely, we study the ratio \(F (\Omega) : = | \Omega | \mu_1 (\Omega)/ P (\Omega) \sigma_1 (\Omega)\). We prove that this ratio can take arbitrarily small or large values if we do not put any restriction on the class of sets \(\Omega \). Then we restrict ourselves to the class of plane convex domains for which we get explicit bounds. We also study the case of thin convex domains for which we give more precise bounds. The paper finishes with the plot of the corresponding Blaschke-Santaló diagrams \((x, y) = (| \Omega | \mu_1 (\Omega), P (\Omega) \sigma_1 (\Omega))\).

MSC:

35P15 Estimates of eigenvalues in context of PDEs
35J25 Boundary value problems for second-order elliptic equations
49Q10 Optimization of shapes other than minimal surfaces
49R05 Variational methods for eigenvalues of operators
52A40 Inequalities and extremum problems involving convexity in convex geometry

References:

[1] P. R. S. Antunes and A. Henrot, On the range of the first two Dirichlet and Neumann eigenvalues of the Laplacian. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 467 (2011), no. 2130, 1577-1603 Zbl 1228.35156 MR 2795792 · Zbl 1228.35156
[2] R. Bañuelos and K. Burdzy, On the “hot spots” conjecture of J. Rauch. J. Funct. Anal. 164 (1999), no. 1, 1-33 Zbl 0938.35045 MR 1694534 · Zbl 0938.35045
[3] B. Bogosel, The Steklov spectrum on moving domains. Appl. Math. Optim. 75 (2017), no. 1, 1-25 Zbl 1359.49015 MR 3600388 · Zbl 1359.49015
[4] T. Bonnesen, Les problèmes des isopérimètres et des isépiphanes. Gauthier-Villars, Paris, 1929. JFM 55.0431.08 · JFM 55.0431.08
[5] M.-H. Bossel, Membranes élastiquement liées: extension du théorème de Rayleigh-Faber-Krahn et de l’inégalité de Cheeger. C. R. Acad. Sci. Paris Sér. I Math. 302 (1986), no. 1, 47-50 Zbl 0606.73018 MR 827106 · Zbl 0606.73018
[6] B. Brandolini, F. Chiacchio, and J. J. Langford, Eigenvalue estimates for p-Laplace prob-lems on domains expressed in Fermi coordinates. 2021, arXiv:2106.13903
[7] D. Bucur, G. Buttazzo, and I. Figueiredo, On the attainable eigenvalues of the Laplace operator. SIAM J. Math. Anal. 30 (1999), no. 3, 527-536 Zbl 0920.35099 MR 1677942 · Zbl 0920.35099
[8] D. Bucur, A. Giacomini, and P. Trebeschi, L 1 bounds of Steklov eigenfunctions and spectrum stability under domain variation. J. Differential Equations 269 (2020), no. 12, 11461-11491 Zbl 1450.35192 MR 4152215 · Zbl 1450.35192
[9] D. Bucur, A. Henrot, and M. Michetti, Asymptotic behaviour of the Steklov spectrum on dumbbell domains. Comm. Partial Differential Equations 46 (2021), no. 2, 362-393 Zbl 1460.35244 MR 4207951 · Zbl 1460.35244
[10] D. Bucur and M. Nahon, Stability and instability issues of the Weinstock inequality. Trans. Amer. Math. Soc. 374 (2021), no. 3, 2201-2223 Zbl 1458.35287 MR 4216737 · Zbl 1458.35287
[11] S. Y. Cheng, Eigenvalue comparison theorems and its geometric applications. Math. Z. 143 (1975), no. 3, 289-297 Zbl 0329.53035 MR 378001 · Zbl 0329.53035
[12] Y. Egorov and V. Kondratiev, On spectral theory of elliptic operators. Oper. Theory: Adv. Appl. 89, Birkhäuser, Basel, 1996 Zbl 0855.35001 MR 1409364 · Zbl 0855.35001
[13] I. Ftouhi and A. Henrot, The diagram . 1 ; 1 /. Math. Rep. (Bucur.) 24(74) (2022), no. 1-2, 159-177 MR 4431498
[14] A. Girouard, A. Henrot, and J. Lagacé, From Steklov to Neumann via homogenisation. Arch. Ration. Mech. Anal. 239 (2021), no. 2, 981-1023 Zbl 1458.35040 MR 4201620 · Zbl 1458.35040
[15] A. Girouard, M. Karpukhin, and J. Lagacé, Continuity of eigenvalues and shape optimisa-tion for Laplace and Steklov problems. Geom. Funct. Anal. 31 (2021), no. 3, 513-561 Zbl 1480.35305 MR 4311579 · Zbl 1480.35305
[16] R. R. Hall, A class of isoperimetric inequalities. J. Analyse Math. 45 (1985), 169-180 Zbl 0634.42002 MR 833410 · Zbl 0634.42002
[17] A. Hassannezhad and A. Siffert, A note on Kuttler-Sigillito’s inequalities. Ann. Math. Qué. 44 (2020), no. 1, 125-147 Zbl 1439.35349 MR 4071873 · Zbl 1439.35349
[18] A. Henrot, Extremum problems for eigenvalues of elliptic operators. Frontiers in Mathem-atics, Birkhäuser, Basel, 2006 Zbl 1109.35081 MR 2251558
[19] A. Henrot, A. Lemenant, and I. Lucardesi, An isoperimetric problem with two distinct solutions. 2022, arXiv:2210.17225
[20] A. Henrot and M. Pierre, Shape variation and optimization. EMS Tracts Math. 28, European Mathematical Society (EMS), Zürich, 2018 Zbl 1392.49001 MR 3791463 · Zbl 1392.49001
[21] M. A. Hernández Cifre, Is there a planar convex set with given width, diameter, and inra-dius? Amer. Math. Monthly 107 (2000), no. 10, 893-900 Zbl 0983.52002 MR 1806918 · Zbl 0983.52002
[22] S. Jimbo and Y. Morita, Remarks on the behavior of certain eigenvalues on a singularly perturbed domain with several thin channels. Comm. Partial Differential Equations 17 (1992), no. 3-4, 523-552 Zbl 0766.35029 MR 1163435 · Zbl 0766.35029
[23] B. Kawohl and T. Lachand-Robert, Characterization of Cheeger sets for convex subsets of the plane. Pacific J. Math. 225 (2006), no. 1, 103-118 Zbl 1133.52002 MR 2233727 · Zbl 1133.52002
[24] D. Krejčiřík and M. Tušek, Location of hot spots in thin curved strips. J. Differential Equations 266 (2019), no. 6, 2953-2977 Zbl 1407.35069 MR 3912674 · Zbl 1407.35069
[25] T. Kubota, Einige Ungleichheitsbeziehungen über Eilinien und Eiflächen, Tôhoku Science Rep. (1) 12 (1923), 45-65 JFM 49.0533.02 · JFM 49.0533.02
[26] J. R. Kuttler and V. G. Sigillito, Inequalities for membrane and Stekloff eigenvalues. J. Math. Anal. Appl. 23 (1968), 148-160 Zbl 0167.45701 MR 226226 · Zbl 0167.45701
[27] P. D. Lamberti and L. Provenzano, Viewing the Steklov eigenvalues of the Laplace oper-ator as critical Neumann eigenvalues. In Current trends in analysis and its applications, pp. 171-178, Trends Math., Birkhäuser/Springer, Cham, 2015 Zbl 1325.35124 MR 3496508 · Zbl 1325.35124
[28] I. Lucardesi and D. Zucco, On Blaschke-Santaló diagrams for the torsional rigidity and the first Dirichlet eigenvalue. Ann. Mat. Pura Appl. (4) 201 (2022), no. 1, 175-201 Zbl 1486.49056 MR 4375007 · Zbl 1486.49056
[29] L. E. Payne and H. F. Weinberger, An optimal Poincaré inequality for convex domains. Arch. Rational Mech. Anal. 5 (1960), 286-292 (1960) Zbl 0099.08402 MR 117419 · Zbl 0099.08402
[30] H. Sachs, Ungleichungen für Umfang, Flächeninhalt und Trägheitsmoment konvexer Kur-ven. Acta Math. Acad. Sci. Hungar. 11 (1960), 103-115 Zbl 0101.14704 MR 140002 · Zbl 0101.14704
[31] P. R. Scott and P. W. Awyong, Inequalities for convex sets. JIPAM. J. Inequal. Pure Appl. Math. 1 (2000), no. 1, article no. 6 Zbl 0955.52007 MR 1756657 · Zbl 0955.52007
[32] G. Szegö, Inequalities for certain eigenvalues of a membrane of given area. J. Rational Mech. Anal. 3 (1954), 343-356 Zbl 0055.08802 MR 61749 · Zbl 0055.08802
[33] B. A. Troesch, An isoperimetric sloshing problem. Comm. Pure Appl. Math. 18 (1965), 319-338 Zbl 0145.46401 MR 183210 · Zbl 0145.46401
[34] M. van den Berg, G. Buttazzo, and A. Pratelli, On relations between principal eigenvalue and torsional rigidity. Commun. Contemp. Math. 23 (2021), no. 8, article no. 2050093 Zbl 1479.49092 MR 4348945 · Zbl 1479.49092
[35] H. T. Wang, Convex functions and Fourier coefficients. Proc. Amer. Math. Soc. 94 (1985), no. 4, 641-646 Zbl 0583.26002 MR 792276 · Zbl 0583.26002
[36] H. F. Weinberger, An isoperimetric inequality for the N -dimensional free membrane prob-lem. J. Rational Mech. Anal. 5 (1956), 633-636 Zbl 0071.09902 MR 79286 · Zbl 0071.09902
[37] R. Weinstock, Inequalities for a classical eigenvalue problem. J. Rational Mech. Anal. 3 (1954), 745-753 Zbl 0056.09801 MR 64989 · Zbl 0056.09801
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.