×

The Steklov spectrum on moving domains. (English) Zbl 1359.49015

Summary: We study the continuity of the Steklov spectrum on variable domains with respect to the Hausdorff convergence. A key point of the article is understanding the behaviour of the traces of Sobolev functions on moving boundaries of sets satisfying an uniform geometric condition. As a consequence, we are able to prove existence results for shape optimization problems regarding the Steklov spectrum in the family of sets satisfying a \(\varepsilon \)-cone condition and in the family of convex sets.

MSC:

49Q10 Optimization of shapes other than minimal surfaces
35P15 Estimates of eigenvalues in context of PDEs
Full Text: DOI

References:

[1] Brock, F.: An isoperimetric inequality for eigenvalues of the Stekloff problem. ZAMM Z. Angew. Math. Mech. 81(1), 69-71 (2001) · Zbl 0971.35055 · doi:10.1002/1521-4001(200101)81:1<69::AID-ZAMM69>3.0.CO;2-#
[2] Bucur, D.: How to prove existence in shape optimization. Control Cybernet. 34(1), 103-116 (2005) · Zbl 1167.49325
[3] Bucur, D., Buttazzo, G.: Variational Methods in Shape Optimization Problems. Progress in Nonlinear Differential Equations and Their Applications, vol. 65. Birkhäuser Boston, Inc., Boston (2005) · Zbl 1117.49001
[4] Bucur, D., Gazzola, F.: The first biharmonic Steklov eigenvalue: positivity preserving and shape optimization. Milan J. Math. 79(1), 247-258 (2011) · Zbl 1229.35156 · doi:10.1007/s00032-011-0143-x
[5] Colbois, B., El Soufi, A., Girouard, A.: Isoperimetric control of the Steklov spectrum. J. Funct. Anal. 261(5), 1384-1399 (2011) · Zbl 1235.58020 · doi:10.1016/j.jfa.2011.05.006
[6] Evans, L.C.: Weak Convergence Methods for Nonlinear Partial Differential Equations, Volume 74 of CBMS Regional Conference Series in Mathematics. Published for the Conference Board of the Mathematical Sciences, Washington, DC. American Mathematical Society, Providence (1990)
[7] Evans, L.C., Gariepy, R.F.: Measure Theory and Fine Properties of Functions. Studies in Advanced Mathematics. CRC Press, Boca Raton (1992) · Zbl 0804.28001
[8] Girouard, A., Polterovich, I.: On the Hersch-Payne-Schiffer estimates for the eigenvalues of the Steklov problem. Funktsional. Anal. i Prilozhen. 44(2), 33-47 (2010) · Zbl 1217.35125 · doi:10.1007/s10688-010-0014-1
[9] Girouard, A., Polterovich, I.: Shape optimization for low Neumann and Steklov eigenvalues. Math. Methods Appl. Sci. 33(4), 501-516 (2010) · Zbl 1186.35121
[10] Henrot, A.: Extremum Problems for Eigenvalues of Elliptic Operators. Frontiers in Mathematics. Birkhäuser Verlag, Basel (2006) · Zbl 1109.35081
[11] Henrot, A., Pierre, M.: Variation et optimisation de formes, Volume 48 of Mathématiques & Applications (Berlin) [Mathematics & Applications]. Springer, Berlin (2005). Une analyse géométrique. [A geometric analysis] · Zbl 1098.49001
[12] Maggi, F.: Sets of Finite Perimeter and Geometric Variational Problems, Volume 135 of Cambridge Studies in Advanced Mathematics. An Introduction to Geometric Measure Theory. Cambridge University Press, Cambridge (2012) · Zbl 1255.49074 · doi:10.1017/CBO9781139108133
[13] Royden, H.L.: Real Analysis. The Macmillan Co. and Collier-Macmillan Ltd., New York and London (1963) · Zbl 0121.05501
[14] Tiba, D.: A property of Sobolev spaces and existence in optimal design. Appl. Math. Optim. 47(1), 45-58 (2003) · Zbl 1012.49030 · doi:10.1007/s00245-002-0740-8
[15] Weinstock, R.: Inequalities for a classical eigenvalue problem. J. Rational Mech. Anal. 3, 745-753 (1954) · Zbl 0056.09801
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.