×

Symmetric polynomials in the free metabelian Poisson algebras. (English) Zbl 1520.17031

The metabelian variety of Poisson algebras is defined by the polynomial identity \([[x_1,x_2],[x_3,x_4]]=0\). In the paper under review the authors study the canonical action of the symmetric group \(S_n\) of degree \(n\) on the free \(n\)-generated metabelian Poisson algebra \(P_n\) over a field \(K\) of characteristic zero. The main result gives a complete description of the elements of \(P_n\) which are fixed under the action of \(S_n\). The proofs are based on the descriptions of \(P_n\) given in the preprint [Z. Z. Zhang et al., “Word problem for finitely presented metabelian Poisson algebras”, Preprint, arXiv:1907.05953] and of the symmetric polynomials in the free metabelian Lie algebra given in [V. Drensky et al., Mediterr. J. Math. 17, No. 5, Paper No. 151, 11 p. (2020; Zbl 1475.17010)].

MSC:

17B63 Poisson algebras
17B01 Identities, free Lie (super)algebras
17B30 Solvable, nilpotent (super)algebras
17B60 Lie (super)algebras associated with other structures (associative, Jordan, etc.)
17B40 Automorphisms, derivations, other operators for Lie algebras and super algebras
16W22 Actions of groups and semigroups; invariant theory (associative rings and algebras)

Citations:

Zbl 1475.17010
Full Text: DOI

References:

[1] Agore, A. L. and Militaru, G., The global extension problem, crossed products and co-flag non-commutative Poisson algebra, J. Algebra426 (2015) 1-31. · Zbl 1393.17036
[2] Akdoğan, N. and Fındık, Ş., Symmetric polynomials in the variety generated by Grassmann algebras, Journal of Algebra and Its Applications (2021) in press.
[3] Bahturin, Y. A., Identical Relations in Lie Algebras, Nauk, Moscow, 1985); Translation: (VNU Science Press, Utrecht, 1987).
[4] Bergeron, N., Reutenauer, C., Rosas, M. and Zabrocki, M., Invariants and coinvariants of the symmetric groups in noncommuting variables, Canad. J. Math.60(2) (2008) 266-296. · Zbl 1180.16025
[5] Bryant, R. M., On the fixed points of a finite group acting on a free Lie algebra, J. London Math. Soc.43(2) (1991) 215-224. · Zbl 0685.20004
[6] Chari, V. and Pressley, A. N., A Guide to Quantum Groups (Cambridge University Press, Cambridge, 1994). · Zbl 0839.17009
[7] Dicks, W. and Formanek, E., Poincaré series and a problem of S. Montgomery, Linear Multilinear Algebra12 (1982) 21-30. · Zbl 0493.15020
[8] Drensky, V., Fixed algebras of residually nilpotent Lie algebras, Proc. Amer. Math. Soc.120(4) (1994) 1021-1028. · Zbl 0801.17020
[9] Drensky, V., Fındık, Ş. and Öğüşlü, N. Ş., Symmetric polynomials in the free metabelian Lie algebras, Mediterr. J. Math.17(5) (2020) 1-11. · Zbl 1475.17010
[10] Drinfel’d, V. G., Quantum groups, in Proc. Int. Cong. Mathematicians, Berkeley, 1986 (AMS, Providence, RI, 1987), pp. 798-820. · Zbl 0667.16003
[11] Farkas, D. R., Poisson polynomial identities, Comm. Algebra26 (1998) 401-416. · Zbl 0892.17001
[12] Farkas, D. R., Poisson polynomial identities. II, Arch. Math.72 (1999) 252-260. · Zbl 0932.17021
[13] Fındık, Ş. and Öǧüşlü, N. Ş., Palindromes in the free metabelian Lie algebras, Int. J. Algebra Comput.29(5) (2019) 885-891. · Zbl 1429.17008
[14] Fındık, Ş. and Özkurt, Z., Symmetric polynomials in Leibniz algebras and their inner automorphisms, Turkish. J. Math.44(6) (2020) 2306-2311. · Zbl 1522.17006
[15] Gelfand, I. M., Krob, D., Lascoux, A., Leclerc, B., Retakh, V. S. and Thibon, J. Y., Noncommutative symmetric functions, Adv. Math.112(2) (1995) 218-348. · Zbl 0831.05063
[16] Gerstenhaber, M., On the deformation of rings and algebras, Ann. Math.79 (1964) 59-103. · Zbl 0123.03101
[17] Giambruno, A. and Petrogradsky, V., Poisson identities of enveloping algebras, Arch. Math.87 (2006) 505-515. · Zbl 1214.17008
[18] D. Hilbert, Mathematische Probleme, Göttinger Nachrichten (1900), 253-297; Arch. Math. Phys. 3(1) (1901) 44-63; Translation: Bull. Amer. Math. Soc. 8(10) (1902) 437-479.
[19] V. K. Kharchenko, Algebra of invariants of free algebras, Algebra i Logika17 (1978) 478-487; Translation: Algebra Logic17 (1978) 316-321. · Zbl 0433.16004
[20] A. N. Koryukin, Noncommutative invariants of reductive groups, Algebra i Logika23(4) (1984) 419-429; Translation: Algebra Logic23 (1984) 290-296. · Zbl 0587.20023
[21] Nagata, M., On the 14th problem of Hilbert, Amer. J. Math.81 (1959) 766-772. · Zbl 0192.13801
[22] Nagata, M., On the Automorphism Group of k[x, y], , Vol. 5, Kyoto University, Kinokuniya, Tokio (1972). · Zbl 0306.14001
[23] Noether, E., Der Endlichkeitssatz der Invarianten endlicher Gruppen, Math. Ann.77 (1916) 89-92. · JFM 45.0198.01
[24] I. P. Shestakov, Quantization of Poisson superalgebras and speciality of Jordan Poisson superalgebras, Algebra i Logika32(5) (1993) 571-584; English translation: Algebra Logic32 (1993) 309-317. · Zbl 0826.17013
[25] A. L. Shmel’kin, Wreath products of Lie algebras and their application in the theory of groups, Trudy Moskov. Mat. Obshch. 29 (1973) 247-260; Translation: Trans. Moscow Math. Soc. 29 (1973) 239-252. · Zbl 0318.17003
[26] Umirbaev, U. U. and Shestakov, I. P., Subalgebras and automorphisms of polynomial rings, Dokl. Akad. Nauk386(6) (2002) 745-748. · Zbl 1170.14310
[27] Shestakov, I. P. and Umirbaev, U. U., The Nagata automorphism is wild, Proc. Nat. Acad. Sci. USA100(22) (2003) 12561-12563. · Zbl 1065.13010
[28] Shestakov, I. P. and Umirbaev, U. U., Poisson brackets and two generated subalgebras of rings of polynomials, J. Am. Math. Soc.17 (2004) 181-196. · Zbl 1044.17014
[29] Shestakov, I. P. and Umirbaev, U. U., Tame and wild automorphisms of rings of polynomials in three variables, J. Am. Math. Soc.17 (2004) 197-227. · Zbl 1056.14085
[30] Vaisman, I., Lectures on the Geometry of Poisson Manifolds (Birkhäuser, Basel, 1994). · Zbl 0810.53019
[31] Weitzenböck, R., Über die Invarianten von linearen Gruppen, Acta Math.58 (1932) 231-293. · Zbl 0004.24301
[32] Wolf, M. C., Symmetric functions of non-commutative elements, Duke Math. J.2(4) (1936) 626-637. · JFM 62.1103.01
[33] Z. Z. Zhang, Y. Chen and L. A. Bokut, Word problem for finitely presented metabelian Poisson algebras, preprint (2019), arXiv:1907.05953.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.