×

Symmetric polynomials in the free metabelian Lie algebras. (English) Zbl 1475.17010

The symmetric group \(S_n\) of degree \(n\) is a subgroup of the automorphism group of the free metabelian Lie algebra \(F_n\) of rank \(n\), acting via permutation of the free generators. The Lie subalgebra \(F_n^{S_n}\) of invariants is not finitely generated as a Lie algebra. However, its intersection with the commutator ideal of \(F_n\) is naturally a module over \(K[X_n]^{S_n}\), the commutative algebra of symmetric polynomials in \(n\) indeterminates. In the paper the authors find explicit generators for this module. The case \(n=2\) was settled earlier in [Ş. Fındık and N. Ş. Öğüşlü, Int. J. Algebra Comput. 29, No. 5, 885–891 (2019; Zbl 1429.17008)].

MSC:

17B01 Identities, free Lie (super)algebras
17B30 Solvable, nilpotent (super)algebras
05E05 Symmetric functions and generalizations

Citations:

Zbl 1429.17008

References:

[1] Bahturin, Yu.A.: Identical Relations in Lie Algebras (Russian). Nauka, Moscow (1985). (Translation: VNU Science Press, Utrecht, 1987)
[2] Bergeron, N.; Reutenauer, C.; Rosas, M.; Zabrocki, M., Invariants and coinvariants of the symmetric groups in noncommuting variables, Can. J. Math., 60, 2, 266-296 (2008) · Zbl 1180.16025 · doi:10.4153/CJM-2008-013-4
[3] Bryant, RM, On the fixed points of a finite group acting on a free Lie algebra, J. Lond. Math. Soc., 43, 2, 215-224 (1991) · Zbl 0685.20004 · doi:10.1112/jlms/s2-43.2.215
[4] Bryant, RM; Papistas, AI, On the fixed points of a finite group acting on a relatively free Lie algebra, Glasg. Math. J., 42, 2, 167-181 (2000) · Zbl 0971.17002 · doi:10.1017/S0017089500020024
[5] Dicks, W.; Formanek, E., Poincaré series and a problem of S. Montgomery, Linear Multilinear Algebra, 12, 21-30 (1982) · Zbl 0493.15020 · doi:10.1080/03081088208817467
[6] Domokos, M.; Drensky, V., Rationality of Hilbert series in noncommutative invariant theory, Int. J. Algebra Comput., 27, 7, 831-848 (2017) · Zbl 1405.16032 · doi:10.1142/S0218196717500394
[7] Drensky, V., Fixed algebras of residually nilpotent Lie algebras, Proc. Am. Math. Soc., 120, 4, 1021-1028 (1994) · Zbl 0801.17020 · doi:10.1090/S0002-9939-1994-1181161-3
[8] Drensky, V.; Fındık, Ş., Classical invariant theory for free metabelian Lie algebras, J. Lie Theory, 29, 1071-1092 (2019) · Zbl 1436.17018
[9] Fındık, Ş.; Öǧüşlü, NŞ, Palindromes in the free metabelian Lie algebras, Int. J. Algebra Comput., 29, 5, 885-891 (2019) · Zbl 1429.17008 · doi:10.1142/S0218196719500334
[10] Gelfand, IM; Krob, D.; Lascoux, A.; Leclerc, B.; Retakh, VS; Thibon, J-Y, Noncommutative symmetric functions, Adv. Math., 112, 2, 218-348 (1995) · Zbl 0831.05063 · doi:10.1006/aima.1995.1032
[11] Hilbert, D.: Mathematische Probleme. Göttinger Nachrichten 253-297, (1900) Archiv der Mathematik und Physik (3) 1, 44-63, 213-237 (1901). Translation: Bull. Amer. Math. Soc. 8(10), 437-479 (1902) · JFM 32.0084.05
[12] Kharchenko, V.K.: Algebra of invariants of free algebras (Russian). Algebra i Logika 17, 478-487 (1978). (Translation: Algebra and Logic 17, 316-321 (1978)) · Zbl 0433.16004
[13] Koryukin, A.N.: Noncommutative invariants of reductive groups (Russian). Algebra i Logika 23(4), 419-429 (1984). (Translation: Algebra Logic 23, 290-296 (1984)) · Zbl 0587.20023
[14] Noether, E., Der Endlichkeitssatz der Invarianten endlicher Gruppen, Math. Ann., 77, 89-92 (1916) · JFM 45.0198.01 · doi:10.1007/BF01456821
[15] Shmel’kin, , A.L.: Wreath products of Lie algebras and their application in the theory of groups (Russian). Trudy Moskov. Mat. Obshch. 29, 247-260 (1973). (Translation: Trans. Moscow Math. Soc. 29, 239-252 (1973)) · Zbl 0318.17003
[16] Weyl, H., The Classical Groups, Their Invariants and Representations (1946), Princeton: Princeton University Press, Princeton · JFM 65.0058.02
[17] Wolf, MC, Symmetric functions of non-commutative elements, Duke Math. J., 2, 4, 626-637 (1936) · JFM 62.1103.01 · doi:10.1215/S0012-7094-36-00253-3
[18] Zelmanov, E.I.: On Engel Lie algebras (Russian). Sibirsk. Mat. Zh. 29(5), 112-117 (1988). (Translation: Siberian Math. J. 29, 777-781 (1988)) · Zbl 0673.17006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.