×

A Bombieri-Vinogradov-type result for exponential sums over Piatetski-Shapiro primes. (English) Zbl 1518.11061

The prime numbers of the form \(p=[n^{1/\gamma}]\) are called the Piatetski-Shapiro primes of type \(\gamma\). In this paper, the author establishes a new Bombieri-Vinogradov-type result for exponential sums running over Piatetski-Shapiro primes \(p\) of type \(\gamma\in(865/886,1)\) belonging to the arithmetic progression \(p\equiv a\) modulo \(d\) with \(a\in\mathbb{Z}\) and \(a\neq 0\). More precisely, letting \(1<c<3\), \(c\neq 2\), and \(A>0\), then the author shows that for any \(|t|<X^{1/4-c}\) any sufficiently small \(\varepsilon>0\), \[ \sum_{\substack{d\leq X^\theta\\ \gcd(d,a)=1}}\ \Big|\sum_{\substack{p\leq X\\ p\equiv a\pmod{d}\\ p=[n^{1/\gamma}]}} p^{1-\gamma}e(tp^c)\log p-\frac{\gamma}{\varphi(d)}\int_2^X e(ty^c)\,dy\Big| \ll\frac{X}{(\log X)^A}, \] where \(\theta=\theta(\gamma)=443\gamma/55-173/22-\varepsilon\), and \(e(x)=e^{2\pi i x}\).

MSC:

11L07 Estimates on exponential sums
11L20 Sums over primes

References:

[1] Balog, A.; Friedlander, JP, A hybrid of theorems of Vinogradov and Piatetski-Shapiro, Pac. J. Math., 156, 45-62 (1992) · Zbl 0726.11061 · doi:10.2140/pjm.1992.156.45
[2] Bourgain, J., Decoupling, exponential sums and the Riemann zeta function, J. Am. Math. Soc., 30, 205-224 (2017) · Zbl 1352.11065 · doi:10.1090/jams/860
[3] Dimitrov, SI, A ternary Diophantine inequality by primes with one of the form p = x^2 + y^2 + 1, Ramanujan J., 59, 2, 571-607 (2022) · Zbl 1497.11088 · doi:10.1007/s11139-021-00545-1
[4] Graham, SW; Kolesnik, G., Van der Corput’s Method of Exponential Sums (1991), New York: Cambridge Univ. Press, New York · Zbl 0713.11001 · doi:10.1017/CBO9780511661976
[5] Heath-Brown, DR, Prime numbers in short intervals and a generalized Vaughan identity, Can. J. Math., 34, 1365-1377 (1982) · Zbl 0478.10024 · doi:10.4153/CJM-1982-095-9
[6] Heath-Brown, DR, The Piatetski-Shapiro prime number theorem, J. Number Theory, 16, 242-266 (1983) · Zbl 0513.10042 · doi:10.1016/0022-314X(83)90044-6
[7] Li, J.; Zhang, M.; Xue, F., An additive problem over Piatetski-Shapiro primes and almost-primes, Ramanujan J., 57, 1307-1333 (2022) · Zbl 1537.11112 · doi:10.1007/s11139-021-00390-2
[8] Y. Lu, An additive problem on Piatetski-Shapiro primes, Acta Math. Sin., Engl. Ser., 34:255-264, 2018. · Zbl 1446.11185
[9] Peneva, T., An additive problem with Piatetski-Shapiro primes and almost-primes, Monatsh. Math., 140, 119-133 (2003) · Zbl 1117.11045 · doi:10.1007/s00605-002-0005-2
[10] Piatetski-Shapiro, II, On the distribution of prime numbers in sequences of the form [f(n)], Mat. Sb., 33, 559-566 (1953) · Zbl 0053.02702
[11] Rivat, J.; Sargos, P., Nombres premiers de la forme [n^c], Can. J. Math., 53, 414-433 (2001) · Zbl 0970.11035 · doi:10.4153/CJM-2001-017-0
[12] Rivat, J.; Wu, J., Prime numbers of the form [n^c], Glasg. Math. J., 43, 2, 237-254 (2001) · Zbl 0987.11052 · doi:10.1017/S0017089501020080
[13] Wang, X.; Cai, Y., An additive problem involving Piatetski-Shapiro primes, Int. J. Number Theory, 7, 1359-1378 (2011) · Zbl 1231.11122 · doi:10.1142/S1793042111004630
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.