×

Vector random fields on the probability simplex with metric-dependent covariance matrix functions. (English) Zbl 1517.60055

Summary: This paper constructs a class of isotropic vector random fields on the probability simplex via infinite series expansions involving the ultraspherical polynomials, whose covariance matrix functions are functions of the metric (distance function) on the probability simplex, and introduces the scalar and vector fractional, bifractional, and trifractional Brownian motions over the probability simplex, while the metric is shown to be conditionally negative definite.

MSC:

60G60 Random fields
60G22 Fractional processes, including fractional Brownian motion
62M10 Time series, auto-correlation, regression, etc. in statistics (GARCH)
62M20 Inference from stochastic processes and prediction
Full Text: DOI

References:

[1] Aitchison, J., The Statistical Analysis of Compositional Data (1986), London: Chapman and Hall Ltd, London · Zbl 0688.62004 · doi:10.1007/978-94-009-4109-0
[2] Anderes, E.; Moller, J.; Rasmussen, JG, Isotropic covariance functions on graphs and their edges, Ann. Statist., 48, 2478-2503 (2020) · Zbl 1455.62142 · doi:10.1214/19-AOS1896
[3] Andrews, GE; Askey, R.; Roy, R., Special Functions (1999), Cambridge, UK: Cambridge University Press, Cambridge, UK · Zbl 0920.33001 · doi:10.1017/CBO9781107325937
[4] Askey, R.; Bingham, NH, Gaussian processes on compact symmetric spaces, Z. Wahrscheinlichkeit- stheorie und Verw. Gebiete, 37, 127-143 (1976) · Zbl 0329.60019 · doi:10.1007/BF00536776
[5] Barndorff-Nielsen, OE, Some parametric models on the simplex, J. Mul. Anal., 39, 106-116 (1991) · Zbl 0739.62015 · doi:10.1016/0047-259X(91)90008-P
[6] Berg, C.; Christensen, JPR; Ressel, P., Harmonic Analysis on Semigroups: Theory of Positive Definite and Related Functions (1984), New York: Springer, New York · Zbl 0619.43001 · doi:10.1007/978-1-4612-1128-0
[7] Bingham, NH; Mijatovic, A.; Symons, TL, Brownian manifolds, negative type and geotemporal covariances, Com. Stoch. Anal., 10, 421-432 (2016)
[8] Bos, L., Levenberg, N., Waldron, N.: Metrics associated to multivariate polynomial inequalities. In: Advances in Constructive Approximation (Vanderbilt 2003), pp. 133-147. Brentwood, TN: Nashboro Press (2004) · Zbl 1068.41022
[9] Cheng, D.; Xiao, Y., Excursion probability of Gaussian random fields on sphere, Bernoulli, 22, 1113-1130 (2016) · Zbl 1337.60102 · doi:10.3150/14-BEJ688
[10] Cohen, S.; Lifshits, M. A., Stationary Gaussian random fields on a hyperbolic space and on Euclidean spheres, ESAIM: Prob. Statist, 16, 165-221 (2012) · Zbl 1275.60038 · doi:10.1051/ps/2011105
[11] Dai, F.; Xu, Y., Approximation Theory and Harmonic Analysis on Spheres and Balls (2013), New York: Springer, New York · Zbl 1275.42001 · doi:10.1007/978-1-4614-6660-4
[12] Fang, K.; Kotz, S.; Ng, K., Symmetric Multivariate and Related Distributions (1990), London: Chapman and Hall, London · Zbl 0699.62048 · doi:10.1007/978-1-4899-2937-2
[13] Feng, S., The Poisson-Dirichlet Distribution and Related Topics: Models and Asymptotic Behaviors (2010), Berlin: Springer, Berlin · Zbl 1214.60001 · doi:10.1007/978-3-642-11194-5
[14] Gangolli, R., Positive definite kernels on homogeneous spaces and certain stochastic processes related to Lévy’s Brownian motion of several parameters, Ann Inst H Poincaré, B, 3, 121-226 (1967) · Zbl 0157.24902
[15] Gradshteyn, IS; Ryzhik, IM, Tables of Integrals, Series, and Products (2007), Amsterdam: Academic Press, Amsterdam · Zbl 1208.65001
[16] Hannan, EJ, Multiple Time Series (1970), New York: Wiley, New York · Zbl 0211.49804 · doi:10.1002/9780470316429
[17] Istas, J., Karhunen-Loéve expansion of spherical fractional Brownian motions, Statist. Probab. Lett., 76, 1578-1583 (2006) · Zbl 1096.60019 · doi:10.1016/j.spl.2006.03.019
[18] Kaishev, VK, Lévy processes induced by Dirichlet (B)-splines: Modeling multivariate asset price dynamics, Math. Finance, 23, 217-247 (2013) · Zbl 1262.91153 · doi:10.1111/j.1467-9965.2011.00504.x
[19] Karlin, S.; Micchelli, CA; Rinot, Y., Multivariate splines: A probabilistic perspective, J. Mult. Anal., 20, 69-90 (1986) · Zbl 0623.41014 · doi:10.1016/0047-259X(86)90020-5
[20] Kass, RE, The geometry of asymptotic inference, Statist. Sci., 4, 188-234 (1989) · Zbl 0955.62513
[21] Lan, X.; Xiao, Y., Strong local nondeterminism of spherical fractional Brownian motion, Statist. Probab. Lett., 135, 44-50 (2018) · Zbl 1392.60034 · doi:10.1016/j.spl.2017.11.007
[22] Lifshits, M.; Volkova, K., Bifractional Brownian motion: existence and border cases, ESAIM: Probab. Statist., 19, 766-781 (2015) · Zbl 1333.60075 · doi:10.1051/ps/2015015
[23] Lu, T.; Ma, C., Isotropic covariance matrix functions on compact two-point homogeneous spaces, J. Theor. Probab., 33, 1630-1656 (2020) · Zbl 1464.60051 · doi:10.1007/s10959-019-00920-1
[24] Lu, T.; Ma, C.; Wang, F., Series expansions of fractional Brownian motions and strong local nondeterminism of bifractional Brownian motions on balls and spheres, Theor. Probab. Appl., 25 (2017) · Zbl 1509.60095
[25] Lu, T.; Leonenko, N.; Ma, C., Series representations of isotropic vector random fields on balls, Statist. Probab. Lett., 156 (2020) · Zbl 1460.60045 · doi:10.1016/j.spl.2019.108583
[26] Ma, C., Vector random fields with second-order moments or second-order increments, Stoch. Anal. Appl., 29, 197-215 (2011) · Zbl 1213.60071 · doi:10.1080/07362994.2011.532039
[27] Ma, C., Covariance matrices for second-order vector random fields in space and time, IEEE Trans. Signal Proc., 59, 2160-2168 (2011) · Zbl 1391.60118 · doi:10.1109/TSP.2011.2112651
[28] Ma, C., Multifractional vector Brownian motions, their decompositions, and generalizations, Stoch. Anal. Appl., 33, 535-548 (2015) · Zbl 1317.60041 · doi:10.1080/07362994.2015.1017108
[29] Ma, C., Time varying isotropic vector random fields on spheres, J. Theor. Probab., 30, 1763-1785 (2017) · Zbl 1408.60039 · doi:10.1007/s10959-016-0689-1
[30] Ma, C.; Malyarenko, A., Time-varying isotropic vector random fields on compact two-point homogeneous spaces, J. Theor. Prob., 33, 319-339 (2020) · Zbl 1444.60042 · doi:10.1007/s10959-018-0872-7
[31] Malyarenko, A., Invariant Random Fields on Spaces with a Group Action (2013), New York: Springer, New York · Zbl 1268.60006 · doi:10.1007/978-3-642-33406-1
[32] McNeil, AJ; Neslehová, J., Multivariate Archimedean copulas, d-monotone functions and \(\ell_1\)-norm symmetric distributions, Anna. Statist., 37, 3059-3097 (2009) · Zbl 1173.62044
[33] Szegö, G.: Orthogonal Polynomials, AMS Coll. Publ., Vol. 23. Providence, RI (1975) · Zbl 0305.42011
[34] Talarczyk, A., Bifractional Brownian motion for \(H > 1\) and \(2 H K \le 1\), Statist. Probab. Lett., 157 (2020) · Zbl 1453.60089 · doi:10.1016/j.spl.2019.108628
[35] Venet, N., Nonexistence of fractional Brownian fields indexed by cylinders, Electron. J. Probab., 24, 1-26 (2019) · Zbl 1466.60081 · doi:10.1214/18-EJP256
[36] Wang, F.; Ma, C., \( \ell_1\)-symmetric vector random fields, Stoch. Proc. Appl., 129, 2466-2484 (2019) · Zbl 1478.60159 · doi:10.1016/j.spa.2018.07.012
[37] Yaglom, AM, Correlation Theory of Stationary and Related Random Functions (1987), New York: Springer, New York · Zbl 0685.62078 · doi:10.1007/978-1-4612-4628-2
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.