×

Multivariate Archimedean copulas, \(d\)-monotone functions and \(\ell _{1}\)-norm symmetric distributions. (English) Zbl 1173.62044

Summary: It is shown that a necessary and sufficient condition for an Archimedean copula generator to generate a \(d\)-dimensional copula is that the generator is a \(d\)-monotone function. The class of \(d\)-dimensional Archimedean copulas is shown to coincide with the class of survival copulas of \(d\)-dimensional \(\ell _{1}\)-norm symmetric distributions that place no point mass at the origin. The \(d\)-monotone Archimedean copula generators may be characterized using a little-known integral transform of R. E. Williamson [Duke Math. J. 23, 189–207 (1956; Zbl 0070.28501)] in an analogous manner to the well-known Bernstein-Widder characterization of completely monotone generators in terms of the Laplace transform [see D. V. Widder, The Laplace transform. NY: Princeton Press (1946; JFM 67.0384.01)].
These insights allow the construction of new Archimedean copula families and provide a general solution to the problem of sampling multivariate Archimedean copulas. They also yield useful expressions for the \(d\)-dimensional Kendall function and Kendall’s rank correlation coefficients and facilitate the derivation of results on the existence of densities and the description of singular components for Archimedean copulas. The existence of a sharp lower bound for Archimedean copulas with respect to the positive lower orthant dependence ordering is shown.

MSC:

62H05 Characterization and structure theory for multivariate probability distributions; copulas
62H20 Measures of association (correlation, canonical correlation, etc.)
60E05 Probability distributions: general theory
62E10 Characterization and structure theory of statistical distributions

References:

[1] Barbe, P., Genest, C., Ghoudi, K. and Rémillard, B. (1996). On Kendall’s process. J. Multivariate Anal. 58 197-229. · Zbl 0862.60020 · doi:10.1006/jmva.1996.0048
[2] Bingham, N. H., Goldie, C. M. and Teugels, J. L. (1989). Regular Variation. Encyclopedia of Mathematics and its Applications 27 . Cambridge Univ. Press, Cambridge. · Zbl 0667.26003
[3] Boas, Jr., R. P. and Widder, D. V. (1940). Functions with positive differences. Duke Math. J. 7 496-503. · Zbl 0026.10702 · doi:10.1215/S0012-7094-40-00729-3
[4] Cherubini, U., Luciano, E. and Vecchiato, W. (2004). Copula Methods in Finance . Wiley, Chichester. · Zbl 1163.62081
[5] Clayton, D. G. (1978). A model for association in bivariate life tables and its application in epidemiological studies of familial tendency in chronic disease incidence. Biometrika 65 141-151. JSTOR: · Zbl 0394.92021 · doi:10.1093/biomet/65.1.141
[6] Easton, R. J., Tucker, D. H. and Wayment, S. G. (1967). On the existence almost everywhere of the cross partial derivatives. Math. Z. 102 171-176. · Zbl 0153.08802 · doi:10.1007/BF01112436
[7] Fang, K.-T. and Fang, B.-Q. (1988). Some families of multivariate symmetric distributions related to exponential distribution. J. Multivariate Anal. 24 109-122. · Zbl 0635.62035 · doi:10.1016/0047-259X(88)90105-4
[8] Fang, K.-T., Kotz, S. and Ng, K.-W. (1990). Symmetric Multivariate and Related Distributions . Chapman and Hall, London. · Zbl 0699.62048
[9] Frees, E. W. and Valdez, E. A. (1997). Understanding relationships using copulas. North American Actuarial J. 2 1-25. · Zbl 1081.62564
[10] Genest, C., Ghoudi, K. and Rivest, L.-P. (1995). A semi-parametric estimation procedure of dependence parameters in multivariate families of distributions. Biometrika 82 543-552. JSTOR: · Zbl 0831.62030 · doi:10.1093/biomet/82.3.543
[11] Genest, C. and MacKay, R. J. (1986a). Copules archimédiennes et familles de lois bidimensionnelles dont les marges sont données. Canad. J. Statist. 14 145-159. JSTOR: · Zbl 0605.62049 · doi:10.2307/3314660
[12] Genest, C. and MacKay, R. J. (1986b). The joy of copulas: Bivariate distributions with uniform marginals. Amer. Statist. 40 280-283. JSTOR: · doi:10.2307/2684602
[13] Genest, C. and Nešlehová, J. (2007). A primer on copulas for discrete data. Astin Bull. 37 475-515. · Zbl 1274.62398
[14] Genest, C. and Rivest, L.-P. (1989). A characterization of Gumbel’s family of extreme value distributions. Statist. Probab. Lett. 8 207-211. · Zbl 0701.62060 · doi:10.1016/0167-7152(89)90123-5
[15] Genest, C. and Rivest, L.-P. (1993). Statistical inference procedures for bivariate Archimedean copulas. J. Amer. Statist. Assoc. 88 1034-1043. JSTOR: · Zbl 0785.62032 · doi:10.2307/2290796
[16] Hewitt, E. and Stromberg, K. (1975). Real and Abstract Analysis . Springer, New York. · Zbl 0307.28001
[17] Hoffmann-Jørgensen, J. (1994). Probability with a View Toward Statistics . II. Chapman and Hall, New York. · Zbl 0821.62003
[18] Hopf, E. (1926). Über die Zusammenhänge zwischen gewissen höheren Differenzenquotienten reeller Funktionen einer reellen Variablen und deren Differenzierbarkeitseigenschaften. Ph.D. thesis, Univ. Berlin.
[19] Joe, H. (1997). Multivariate Models and Dependence Concepts. Monographs on Statistics and Applied Probability 73 . Chapman and Hall, London. · Zbl 0990.62517
[20] Kimberling, C. H. (1974). A probabilistic interpretation of complete monotonicity. Aequationes Math. 10 152-164. · Zbl 0309.60012 · doi:10.1007/BF01832852
[21] Klugman, S. A. and Parsa, R. (1999). Fitting bivariate loss distributions with copulas. Insurance Math. Econom. 24 139-148. · Zbl 0931.62044 · doi:10.1016/S0167-6687(98)00039-0
[22] Ling, C.-H. (1965). Representation of associative functions. Publ. Math. Debrecen 12 189-212. · Zbl 0137.26401
[23] Marshall, A. W. and Olkin, I. (1988). Families of multivariate distributions. J. Amer. Statist. Assoc. 83 834-841. JSTOR: · Zbl 0683.62029 · doi:10.2307/2289314
[24] McNeil, A. J. (2008). Sampling nested Archimedean copulas. J. Statist. Comput. Simulation . 78 567-581. · Zbl 1221.00061 · doi:10.1080/00949650701255834
[25] Miller, A. D. and Vyborny, R. (1986). Some remarks on functions with one-sided derivatives. Amer. Math. Monthly 93 471-475. JSTOR: · Zbl 0602.26005 · doi:10.2307/2323476
[26] Müller, A. and Scarsini, M. (2005). Archimedean copulae and positive dependence. J. Multivariate Anal. 93 434-445. · Zbl 1065.60018 · doi:10.1016/j.jmva.2004.04.003
[27] Nelsen, R. B. (1999). An Introduction to Copulas. Lecture Notes in Statist. 139 . Springer, New York. · Zbl 0909.62052
[28] Nelsen, R. B. (2005). Some properties of Schur-constant survival models and their copulas. Braz. J. Probab. Stat. 19 179-190. · Zbl 1272.62065
[29] Oakes, D. (1989). Bivariate survival models induced by frailties. J. Amer. Statist. Assoc. 84 487-493. JSTOR: · Zbl 0677.62094 · doi:10.2307/2289934
[30] Oakes, D. (1994). Multivariate survival distributions. J. Nonparametr. Statist. 3 343-354. · Zbl 1378.62121 · doi:10.1080/10485259408832593
[31] Popoviciu, T. (1933). Sur quelques propriétés des fonctions d’une ou de deux variables réelles. Ph.D. thesis, Faculté des Sciences de Paris. · JFM 59.0988.06
[32] Popoviciu, T. (1944). Les fonctions convexes . Hermann, Paris. · Zbl 0060.14911
[33] Roberts, A. W. and Varberg, D. E. (1973). Convex Functions. Pure and Applied Mathematics 57 . Academic Press, New York-London. · Zbl 0271.26009
[34] Saks, S. (1937). Theory of the Integral , 2nd ed. Hafner Publishing Co., New York. · JFM 63.0183.05
[35] Scarsini, M. (1984). On measures of concordance. Stochastica 8 201-218. · Zbl 0582.62047
[36] Schönbucher, P. (2003). Credit Derivatives Pricing Models . Wiley, Chichester.
[37] Schweizer, B. and Sklar, A. (1983). Probabilistic Metric Spaces. North-Holland Series in Probability and Applied Mathematics . North-Holland Publishing Co., New York. · Zbl 0546.60010
[38] Sklar, A. (1959). Fonctions de répartition à n dimensions et leurs marges. Publ. Inst. Statist. Univ. Paris 8 229-231. · Zbl 0100.14202
[39] Whelan, N. (2004). Sampling from Archimedean copulas. Quant. Finance 4 339-352. · doi:10.1088/1469-7688/4/3/009
[40] Widder, D. V. (1946). The Laplace Transform . Princeton Univ. Press, Princeton. · Zbl 0060.24801
[41] Williamson, R. E. (1956). Multiply monotone functions and their Laplace transforms. Duke Math. J. 23 189-207. · Zbl 0070.28501 · doi:10.1215/S0012-7094-56-02317-1
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.