×

Bohr and Rogosinski inequalities for operator valued holomorphic functions. (English) Zbl 1516.46024

Authors’ summary: For any complex Banach space \(X\) and each \(p\in [1,\infty),\) we introduce the \(p\)-Bohr radius of order \(N\in \mathbb{N},\) \(\tilde{R}_{p,N}(X),\) defined by \[ \tilde{R}_{p,N}(X)=\sup \Bigl\{r\ge 0:\sum_{k=0}^N \|x_k\|^pr^{pk}\le \|f\|^p_{H^\infty(D,X)} \Bigr\}, \] where \(f(z)=\sum^\infty_{k=0}x_kz^k \in H^\infty(D,X).\) Here \(D=\{z\in \mathbb{C}:|z|<1\}\) denotes the unit disk. We also introduce the following geometric notion of \(p\)-uniformly \(\mathbb{C}\)-convexity of order \(N\) for a complex Banach space \(X\) for some \(N\in \mathbb{N}\). For \(p\in[2,\infty),\) a complex Banach space \(X\) is called \(p\)-uniformly \(\mathbb{C}\)-convex of order \(N\) if there exists a constant \(\lambda>0\) such that \[ \big(\|x_0\|^p+\lambda\|x_1\|^p+\lambda^2\|x_2\|^p+\cdots+\lambda^N\|x_N\|^p\big)^{1/p}\leq\max_{\theta\in[0,2\pi)} \Bigl\| x_0+\sum_{k=1}^N e^{i\theta}x_k \Bigr\| \tag{1} \] for all \(x_0, x_1, \dots, x_N\in X.\) We denote \(A_{p,N}(X),\) the supremum of all such constants \(\lambda\) satisfying \((1).\) We obtain the lower and upper bounds of \(\tilde{R}_{p,N}(X)\) in terms of \(A_{p,N}(X).\) In this paper, for \(p\in [2,\infty)\) and each \(N\in \mathbb{N},\) we prove that a complex Banach space \(X\) is \(p\)-uniformly C-convex of order \(N\) if, and only if, the \(p\)-Bohr radius of order \(N\) \(\tilde{R}_{p,N}(X)>0.\) We also study the \(p\)-Bohr radius of order \(N\) for the Lebesgue spaces \(L_q(\mu)\) for \(1\le p<q<\infty\) or \(1\le q\le p<2.\) Finally, we prove an operator valued analogue of a refined version of Bohr and Rogosinski inequality for bounded holomorphic functions from the unit disk \(D\) into \(B(H),\) where \(B(H)\) denotes the space of all bounded linear operator on a complex Hilbert space \(H.\)

MSC:

46E40 Spaces of vector- and operator-valued functions
47A56 Functions whose values are linear operators (operator- and matrix-valued functions, etc., including analytic and meromorphic ones)
46B20 Geometry and structure of normed linear spaces
47A63 Linear operator inequalities
30B10 Power series (including lacunary series) in one complex variable

References:

[1] Ahamed, M. B.; Allu, V.; Halder, H., The Bohr phenomenon for analytic functions on shifted disks, Ann. Fenn. Math., 47, 103-120 (2022) · Zbl 1482.30024
[2] Aizenberg, L., Multidimensional analogues of Bohr’s theorem on power series, Proc. Am. Math. Soc., 128, 1147-1155 (2000) · Zbl 0948.32001
[3] Aizenberg, L.; Aytuna, A.; Djakov, P., Generalization of theorem on Bohr for bases in spaces of holomorphic functions of several complex variables, J. Math. Anal. Appl., 258, 429-447 (2001) · Zbl 0988.32005
[4] Aizenberg, L., Generalization of results about the Bohr radius for power series, Stud. Math., 180, 161-168 (2007) · Zbl 1118.32001
[5] Allu, V.; Halder, H., Bohr phenomenon for certain subclasses of harmonic mappings, Bull. Sci. Math., 173, Article 103053 pp. (2021) · Zbl 1477.30004
[6] Allu, V.; Halder, H., Bohr radius for certain classes of starlike and convex univalent functions, J. Math. Anal. Appl., 493, Article 124519 pp. (2021) · Zbl 1451.30023
[7] Allu, V.; Halder, H., Operator valued analogues of multidimensional Bohr’s inequality, Can. Math. Bull. (2021)
[8] Aytuna, A.; Djakov, P., Bohr property of bases in the space of entire functions and its generalizations, Bull. Lond. Math. Soc., 45, 2, 411-420 (2013) · Zbl 1276.32001
[9] Bayart, F.; Pellegrino, D.; Seoane-Sepúlveda, J. B., The Bohr radius of the n-dimensional polydisk is equivalent to \(\sqrt{ ( l o g n ) / n} \), Adv. Math., 264, 726-746 (2014) · Zbl 1331.46037
[10] Bénéteau, C.; Dahlner, A.; Khavinson, D., Remarks on the Bohr phenomenon, Comput. Methods Funct. Theory, 4, 1, 1-19 (2004) · Zbl 1067.30094
[11] Bhowmik, B.; Das, N., Bohr phenomenon for subordinating families of certain univalent functions, J. Math. Anal. Appl., 462, 1087-1098 (2018) · Zbl 1391.30003
[12] Bhowmik, B.; Das, N., Bohr phenomenon for operator-valued functions, Proc. Edinb. Math. Soc., 64, 72-86 (2021) · Zbl 1477.47012
[13] Bhowmik, B.; Das, N., A characterization of Banach spaces with nonzero Bohr radius, Arch. Math., 116, 551-558 (2021) · Zbl 1468.30007
[14] Blasco, O.; Pavlovic, M., Complex convexity and vector-valued Littlewood-Paley inequalities, Bull. Lond. Math. Soc., 35, 749-758 (2003) · Zbl 1101.46011
[15] Blasco, O., The Bohr radius of a Banach space, (Vector Measures, Integration and Related Topics. Vector Measures, Integration and Related Topics, Oper. Theory Adv. Appl., vol. 201 (2010), Birkhäuser Verlag: Birkhäuser Verlag Basel), 5964 · Zbl 1248.46030
[16] Blasco, O., The p-Bohr radius of a Banach space, Collect. Math., 68, 87-100 (2017) · Zbl 1371.46013
[17] Boas, H. P.; Khavinson, D., Bohr’s power series theorem in several variables, Proc. Am. Math. Soc., 125, 2975-2979 (1997) · Zbl 0888.32001
[18] Bohr, H., A theorem concerning power series, Proc. Lond. Math. Soc., s2-13, 1-5 (1914) · JFM 44.0289.01
[19] Das, N., Refinements of the Bohr and Rogosinski phenomena, J. Math. Anal. Appl., 508, Article 125847 pp. (2022), 10 pp. · Zbl 1484.30003
[20] Defant, A.; García, D.; Maestre, M., Bohr power series theorem and local Banach space theory, J. Reine Angew. Math., 557, 173-197 (2003) · Zbl 1031.46014
[21] Defant, A.; Frerick, L., A logarithmic lower bound for multi-dimensional Bohr radii, Isr. J. Math., 152, 17-28 (2006) · Zbl 1124.32003
[22] Defant, A.; García, D.; Maestre, M.; Pérez-García, D., Bohr’s strip for vector-valued Dirichlet series, Math. Ann., 342, 533-555 (2008) · Zbl 1154.32001
[23] Defant, A.; Maestre, M.; Schwarting, U., Bohr radii of vector valued holomorphic functions, Adv. Math., 231, 2837-2857 (2012) · Zbl 1252.32001
[24] Defant, A.; Mastyło, Mieczysław; Pérez, Antonio, Bohr’s phenomenon for functions on the Boolean cube, J. Funct. Anal., 275, 3115-3147 (2018) · Zbl 1491.94088
[25] Dilworth, S., Complex convexity and geometry of Banach spaces, Math. Proc. Camb. Philos. Soc., 99, 495-506 (1986) · Zbl 0611.46026
[26] Dixon, P. G., Banach algebras satisfying the non-unital von Neumann inequality, Bull. Lond. Math. Soc., 27, 359-362 (1995) · Zbl 0835.47033
[27] Djakov, P. B.; Ramanujan, M. S., A remark on Bohr’s theorem and its generalizations, J. Anal., 8, 65-77 (2000) · Zbl 0969.30001
[28] Globevnik, J., On complex strict and uniform convexity, Proc. Am. Math. Soc., 47, 175-178 (1975) · Zbl 0307.46015
[29] Huang, Y.; Liu, M-S.; Ponnusamy, S., Refined Bohr-type inequalities with area measure for bounded analytic functions, Anal. Math. Phys., 10, 50 (2020), 21 pp. · Zbl 1473.30002
[30] Kayumov, I. R.; Ponnusamy, S., Improved version of Bohr’s inequalities, C. R. Math. Acad. Sci. Paris, 358, 5, 615-620 (2020) · Zbl 1451.30100
[31] Liu, G.; Liu, Z.; Ponnusamy, S., Refined Bohr inequality for bounded analytic functions, Bull. Sci. Math., 173, Article 103054 pp. (2021), 20 pp. · Zbl 1477.30047
[32] Liu, M. S.; Ponnusamy, S., Multidimensional analogues of refined Bohr’s inequality, Proc. Am. Math. Soc., 149, 2133-2146 (2021) · Zbl 1460.32002
[33] Paulsen, Vern I.; Popescu, Gelu; Singh, Dinesh, On Bohr’s inequality, Proc. Lond. Math. Soc., s3-85, 493-512 (2002) · Zbl 1033.47008
[34] Popescu, G., Bohr inequalities for free holomorphic functions on polyballs, Adv. Math., 347, 1002-1053 (2019) · Zbl 07044308
[35] Rogosinski, W., Uber Bildschranken bei Potenzreihen und ihren Abschnitten, Math. Z., 17, 260-276 (1923) · JFM 49.0231.03
[36] Thorp, E.; Whitley, R., The strong maximum modulus theorem for analytic functions into a Banach space, Proc. Am. Math. Soc., 18, 640-646 (1967) · Zbl 0185.20102
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.