×

A characterization of Banach spaces with nonzero Bohr radius. (English) Zbl 1468.30007

The authors give a characterization of Banach spaces satisfying that certain modification of the Bohr radius hold true. In the work by the reviewer [Oper. Theory: Adv. Appl. 201, 59–64 (2010; Zbl 1248.46030)] the quantity \(R_{p,q}(X)\) associated to a complex Banach space and values \(1\le p,q<\infty\), given by
\[R_{p,q}(X)=\inf\left\{\sup\Big\{r>0: \|x_0\|^p+ \Big(\sum_{n=1}^\infty \|x_n\|r^n\Big)^q\le 1\Big\}: \Big\|\sum_{n=0}^\infty x_nz^n\Big\|_{H^\infty(\mathbb D, X)}\le 1\right\},\]
was introduced. A variation of this quantity \[r_p(X)=\sup\left\{r>0:\Big(\sum_{n=1}^\infty \|x_n\|^pr^n\Big)^{1/p}\le \Big\|\sum_{n=0}^\infty x_nz^n\Big\|_{H^\infty(\mathbb D, X)}\right\}\]
was also considered [the reviewer, Collect. Math. 68, No. 1, 87–100 (2017; Zbl 1371.46013)]. H. Bohr showed that \(r_1(\mathbb C)=R_{1,1}(\mathbb C)=1/3\) [Proc. Lond. Math. Soc. (2) 13, 1–5 (1914; JFM 44.0289.01)]. Since then many work has been done on the so-called Bohr radius. Much later it was observed in the mentioned papers that for vector-valued analytic functions in general the values \(R_{p,q}(X)\) and \(r_p(X)\) need not be positive even for Banach spaces of dimension bigger than 1 in some cases. In this paper the authors characterize the case \(R_{p,q}(X)>0\) in terms of the existence of a constant \(C\) such that \(\Omega_X(\delta)\le C( (1+\delta)^q-(1+\delta)^{q-p})^{1/q}\) for all \(\delta>0\) where \(\Omega\) stands for the modulus of complex convexity given by \(\Omega(\delta)=\sup \{ \|y\|: \|x\|=1, \sup_{|z|<1} \|x+zy\|\le 1+\delta\}\), introduced by J. Globevnik [Proc. Am. Math. Soc. 47, 175–178 (1975; Zbl 0307.46015)]. Since \(r_p(X)>0\) iff \(R_{p,p}(X)>0\) then this result completes the characterization of spaces with \(r_p(X)>0\) for \(p\ge 2\) as those which are \(p\)-uniformly \(\mathbb C\)-convex due to [Zbl 1371.46013)].

MSC:

30B10 Power series (including lacunary series) in one complex variable
32K12 Holomorphic maps with infinite-dimensional arguments or values
46E40 Spaces of vector- and operator-valued functions
Full Text: DOI

References:

[1] Aytuna, A.; Djakov, P., Bohr property of bases in the space of entire functions and its generalizations, Bull. Lond. Math. Soc., 45, 2, 411-420 (2013) · Zbl 1276.32001 · doi:10.1112/blms/bds120
[2] Blasco, O.: The Bohr radius of a Banach space. In: Vector Measures, Integration and Related Topics. Operator Theory: Advances and Applications, vol. 201, pp. 59-64. Birkhäuser Verlag, Basel (2010) · Zbl 1248.46030
[3] Blasco, O., The \(p\)-Bohr radius of a Banach space, Collect. Math., 68, 1, 87-100 (2017) · Zbl 1371.46013 · doi:10.1007/s13348-016-0181-3
[4] Boas, HP; Khavinson, D., Bohr’s power series theorem in several variables, Proc. Amer. Math. Soc., 125, 10, 2975-2979 (1997) · Zbl 0888.32001 · doi:10.1090/S0002-9939-97-04270-6
[5] Bohr, H., A theorem concerning power series, Proc. Lond. Math. Soc., 2, 13, 1-5 (1914) · JFM 44.0289.01 · doi:10.1112/plms/s2-13.1.1
[6] Davis, WJ; Garling, DJH; Tomczak-Jaegermann, N., The complex convexity of quasinormed linear spaces, J. Funct. Anal., 55, 1, 110-150 (1984) · Zbl 0552.46012 · doi:10.1016/0022-1236(84)90021-1
[7] Defant, A.; García, D.; Maestre, M.; Pérez-García, D., Bohr’s strip for vector valued Dirichlet series, Math. Ann., 342, 3, 533-555 (2008) · Zbl 1154.32001 · doi:10.1007/s00208-008-0246-z
[8] Dixon, PG, Banach algebras satisfying the non-unital von Neumann inequality, Bull. Lond. Math. Soc., 27, 4, 359-362 (1995) · Zbl 0835.47033 · doi:10.1112/blms/27.4.359
[9] Djordjević, O.; Pavlović, M., Lipschitz conditions for the norm of a vector valued analytic function, Houston J. Math., 34, 3, 817-826 (2008) · Zbl 1157.46007
[10] Globevnik, J., On complex strict and uniform convexity, Proc. Amer. Math. Soc., 47, 175-178 (1975) · Zbl 0307.46015 · doi:10.1090/S0002-9939-1975-0355564-9
[11] Hamada, H.; Honda, T.; Kohr, G., Bohr’s theorem for holomorphic mappings with values in homogeneous balls, Israel. J. Math., 173, 177-187 (2009) · Zbl 1189.32011 · doi:10.1007/s11856-009-0087-9
[12] Paulsen, VI; Singh, D., Bohr’s inequality for uniform algebras, Proc. Amer. Math. Soc., 132, 12, 3577-3579 (2004) · Zbl 1062.46041 · doi:10.1090/S0002-9939-04-07553-7
[13] Popescu, G., Bohr inequalities for free holomorphic functions on polyballs, Adv. Math., 347, 1002-1053 (2019) · Zbl 07044308 · doi:10.1016/j.aim.2019.03.002
[14] Thorp, E.; Whitley, R., The strong maximum modulus theorem for analytic functions into a Banach space, Proc. Amer. Math. Soc., 18, 640-646 (1967) · Zbl 0185.20102 · doi:10.1090/S0002-9939-1967-0214794-2
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.