×

A PDE construction of the Euclidean \(\Phi^4_3\) quantum field theory. (English) Zbl 1514.81190

Summary: We present a new construction of the Euclidean \(\Phi^4\) quantum field theory on \({\mathbb{R}}^3\) based on PDE arguments. More precisely, we consider an approximation of the stochastic quantization equation on \({\mathbb{R}}^3\) defined on a periodic lattice of mesh size \(\varepsilon\) and side length \(M\). We introduce a new renormalized energy method in weighted spaces and prove tightness of the corresponding Gibbs measures as \(\varepsilon \rightarrow 0\), \(M \rightarrow \infty \). Every limit point is non-Gaussian and satisfies reflection positivity, translation invariance and stretched exponential integrability. These properties allow to verify the Osterwalder-Schrader axioms for a Euclidean QFT apart from rotation invariance and clustering. Our argument applies to arbitrary positive coupling constant, to multicomponent models with \(O(N)\) symmetry and to some long-range variants. Moreover, we establish an integration by parts formula leading to the hierarchy of Dyson-Schwinger equations for the Euclidean correlation functions. To this end, we identify the renormalized cubic term as a distribution on the space of Euclidean fields.

MSC:

81T08 Constructive quantum field theory
81S20 Stochastic quantization
81T25 Quantum field theory on lattices
81T27 Continuum limits in quantum field theory
81T70 Quantization in field theory; cohomological methods
47B37 Linear operators on special spaces (weighted shifts, operators on sequence spaces, etc.)
82B30 Statistical thermodynamics
81R05 Finite-dimensional groups and algebras motivated by physics and their representations

References:

[1] Abdesselam, A., A complete renormalization group trajectory between two fixed points, Commun. Math. Phys., 276, 3, 727-772 (2007) · Zbl 1194.81168
[2] Abdesselam, A., Towards three-dimensional conformal probability, p-Adic Numbers Ultrametr. Anal. Appl., 10, 4, 233-252 (2018) · Zbl 1420.81023
[3] Albeverio, S., Kusuoka, S.: The invariant measure and the flow associated to the \(\Phi^4_3\)-quantum field model. Annali Della Scuola Normale Di Pisa - Classe Di Scienze (2018). doi:10.2422/2036-2145.201809_008 · Zbl 1480.81079
[4] Albeverio, S.; Liang, S.; Zegarlinski, B., Remark on the integration by parts formula for the \(\phi^4_3\)-quantum field model, Infin. Dimens. Anal., Quant. Probab. Relat. Top., 9, 1, 149-154 (2006) · Zbl 1091.81064
[5] Amman, H., Compact embeddings of vector-valued Sobolev and Besov spaces, Glasnik Matematički, 35, 55, 161-177 (2000) · Zbl 0997.46029
[6] Albeverio, S.; Röckner, M., Stochastic differential equations in infinite dimensions: solutions via Dirichlet forms, Probab. Theory Relat. Fields, 89, 3, 347-386 (1991) · Zbl 0725.60055
[7] Albeverio, S.; Yoshida, MW, \(H-C^1\) maps and elliptic SPDEs with polynomial and exponential perturbations of Nelson’s Euclidean free field, J. Funct. Anal., 196, 2, 265-322 (2002) · Zbl 1015.60052
[8] Albeverio, S.; Yoshida, MW, Hida distribution construction of non-Gaussian reflection positive generalized random fields, Infin. Dimens. Anal., Quant. Probab. Relat. Top., 12, 1, 21-49 (2009) · Zbl 1181.60055
[9] Bałaban, T.: Ultraviolet stability in field theory. The \(\varphi_3^4\) model. In: Scaling and Self-similarity in Physics (Bures-sur-Yvette, 1981/1982), vol. 7 of Progr. Phys., pp. 297-319. Birkhäuser, Boston, (1983)
[10] Battle, G., Wavelets and Renormalization (1999), Singapore: World Scientific, Singapore · Zbl 0949.65145
[11] Bailleul, I., Bernicot, F.: High order paracontrolled calculus. Forum of Mathematics, Sigma (2020). (to appear) · Zbl 1473.60093
[12] Bahouri, H.; Chemin, J-Y; Danchin, R., Fourier Analysis and Nonlinear Partial Differential Equations (2011), Berlin: Springer, Berlin · Zbl 1227.35004
[13] Benfatto, G.; Cassandro, M.; Gallavotti, G.; Nicolò, F.; Olivieri, E.; Presutti, E.; Scacciatelli, E., Some probabilistic techniques in field theory, Commun. Math. Phys., 59, 2, 143-166 (1978) · Zbl 0381.60096
[14] Borkar, VS; Chari, RT; Mitter, SK, Stochastic quantization of field theory in finite and infinite volume, J. Funct. Anal., 81, 1, 184-206 (1988) · Zbl 0657.60084
[15] Brydges, D.; Dimock, J.; Hurd, TR, The short distance behavior of \(\phi^4_3\), Commun. Math. Phys., 172, 1, 143-186 (1995) · Zbl 0858.60095
[16] Brydges, D.; Dimock, J.; Hurd, TR, A Non-gaussian fixed point for \(\phi^4\) in \(4- \varepsilon\) dimensions, Commun. Math. Phys., 198, 1, 111-156 (1998) · Zbl 0924.46062
[17] Behan, C., Bootstrapping the long-range Ising model in three dimensions, J. Phys. A: Math. Theor., 52, 7, 075401 (2019) · Zbl 1505.82012
[18] Brydges, DC; Fröhlich, J.; Sokal, AD, A new proof of the existence and nontriviality of the continuum \(\varphi^4_2\) and \(\varphi^4_3\) quantum field theories, Commun. Math. Phys., 91, 2, 141-186 (1983)
[19] Barashkov, N., Gubinelli, M.: A Variational Method for \(\Phi^4_3\)’. Duke Math. J. 169(17), 3339-3415 (2020). doi:10.1215/00127094-2020-0029 · Zbl 1508.81928
[20] Biskup, M.; Kotecký, R., Reflection positivity and phase transitions in lattice spin models, Methods of Contemporary Mathematical Statistical Physics, 1-86 (2009), Berlin, Heidelberg: Springer, Berlin, Heidelberg · Zbl 1180.82041
[21] Brydges, DC; Mitter, PK; Scoppola, B., Critical \((\Phi^4)_{3,\epsilon }\), Commun. Math. Phys., 240, 1-2, 281-327 (2003) · Zbl 1053.81065
[22] Bony, J-M, Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires, Annales scientifiques de l’École normale supérieure, 14, 2, 209-246 (1981) · Zbl 0495.35024
[23] Bényi, Á.; Oh, T.; Pocovnicu, O., On the probabilistic Cauchy theory of the cubic nonlinear Schrödinger equation on \(R^d, d\ge 3\), Trans. Am. Math. Soc., Ser. B, 2, 1, 1-50 (2015) · Zbl 1339.35281
[24] Bourgain, J., Periodic nonlinear Schrödinger equation and invariant measures, Commun. Math. Phys., 166, 1, 1-26 (1994) · Zbl 0822.35126
[25] Bourgain, J., Invariant measures for the 2D-defocusing nonlinear Schrödinger equation, Commun. Math. Phys., 176, 2, 421-445 (1996) · Zbl 0852.35131
[26] Baez, JC; Segal, IE; Zhou, Z-F, Introduction to Algebraic and Constructive Quantum Field Theory (1992), Princeton: Princeton Series in Physics, Princeton University Press, Princeton · Zbl 0760.46061
[27] Burq, N.; Tzvetkov, N., Random data Cauchy theory for supercritical wave equations. I. Local theory, Inventiones Mathematicae, 173, 3, 449-475 (2008) · Zbl 1156.35062
[28] Burq, N.; Tzvetkov, N., Random data Cauchy theory for supercritical wave equations. II. A global existence result, Inventiones Mathematicae, 173, 3, 477-496 (2008) · Zbl 1187.35233
[29] Catellier, R., Chouk, K.: Paracontrolled distributions and the 3-dimensional stochastic quantization equation. To appear in The Annals of Probability (2018) · Zbl 1433.60048
[30] Chatterjee, S., Invariant measures and the soliton resolution conjecture, Commun. Pure Appl. Math., 67, 11, 1737-1842 (2014) · Zbl 1303.35096
[31] Chatterjee, S.; Kirkpatrick, K., Probabilistic methods for discrete nonlinear Schrödinger equations, Commun. Pure Appl. Math., 65, 5, 727-757 (2012) · Zbl 1273.35249
[32] Colliander, J.; Oh, T., Almost sure well-posedness of the cubic nonlinear Schrödinger equation below \({L}^2({\mathbb{T}})\), Duke Math. J., 161, 3, 367-414 (2012) · Zbl 1260.35199
[33] Dimock, J., The renormalization group according to Balaban, I. Small fields, Rev. Math. Physics, 25, 7, 1330010 (2013) · Zbl 1275.81068
[34] Dimock, J., The renormalization group according to Balaban. II. Large fields, J. Math. Phys., 54, 9, 092301 (2013) · Zbl 1284.81217
[35] Dimock, J., The renormalization group according to Balaban III. Convergence, Annales Henri Poincaré, 15, 11, 2133-2175 (2014) · Zbl 1302.81139
[36] Da Prato, G.; Debussche, A., Strong solutions to the stochastic quantization equations, Ann. Probab., 31, 4, 1900-1916 (2003) · Zbl 1071.81070
[37] Eckmann, JP; Epstein, H., Time-ordered products and Schwinger functions, Commun. Math. Phys., 64, 2, 95-130 (1979)
[38] Fernández, R.; Fröhlich, J.; Sokal, AD, Random Walks, Critical Phenomena, and Triviality in Quantum Field Theory (1992), Berlin, Heidelberg: Springer, Berlin, Heidelberg · Zbl 0761.60061
[39] Friz, PK; Hairer, M., A Course on Rough Paths: With an Introduction to Regularity Structures (2014), Berlin: Springer, Berlin · Zbl 1327.60013
[40] Feldman, JS; Osterwalder, K., The Wightman axioms and the mass gap for weakly coupled \(\phi^4_3\) quantum field theories, Ann. Phys., 97, 1, 80-135 (1976)
[41] Feldman, J.S., Ra̧czka, R.: The relativistic field equation of the \(\lambda \phi^4_3\) quantum field theory. Ann. Phys. 108(1), 212-229 (1977)
[42] Friedli, S.; Velenik, Y., Statistical Mechanics of Lattice Systems: A Concrete Mathematical Introduction (2017), CambridgeCambridge: Cambridge University Press, CambridgeCambridge · Zbl 1407.82001
[43] Gubinelli, M., Hofmanová, M.: Global solutions to elliptic and parabolic \(\Phi^4\) models in Euclidean space. arXiv e-prints (2018) · Zbl 1420.35481
[44] Gubinelli, M.; Imkeller, P.; Perkowski, N., Paracontrolled distributions and singular PDEs, Forum Math. Pi, 3, e6, 75 (2015) · Zbl 1333.60149
[45] Glimm, J.; Jaffe, A., Positivity of the \(\phi^4_3\) Hamiltonian, Fortschritte der Physik. Prog. Phys., 21, 327-376 (1973)
[46] Glimm, J.; Jaffe, A., Quantum Physics. A Functional Integral Point of View (1987), New York: Springer, New York · Zbl 0461.46051
[47] Gawędzki, K., Kupiainen, A.: Asymptotic freedom beyond perturbation theory. In: Phénomènes critiques. systèmes aléatoires, théories de jauge, Part I, II (Les Houches, 1984), pp. 185-292. North-Holland, Amsterdam (1986) · Zbl 0706.47039
[48] Glimm, J., Boson fields with the \(:\phi^4:\) interaction in three dimensions, Commun. Math. Phys., 10, 1-47 (1968) · Zbl 0175.24702
[49] Gubinelli, M.; Perkowski, N., KPZ reloaded, Commun. Math. Phys., 349, 1, 165-269 (2017) · Zbl 1388.60110
[50] Gubinelli, M., Controlling rough paths, J. Funct. Anal., 216, 1, 86-140 (2004) · Zbl 1058.60037
[51] Gubinelli, M., Ugurcan, B., Zachhuber, I.: Semilinear evolution equations for the Anderson Hamiltonian in two and three dimensions. Anal. Comput., Stoch. Partial Diff. Equ. (2019) · Zbl 1436.35331
[52] Hairer, M., A theory of regularity structures, Inventiones mathematicae, 198, 2, 269-504 (2014) · Zbl 1332.60093
[53] Hairer, M.: Regularity structures and the dynamical \(\phi^4_3\) model (2015). arXiv:1508.05261
[54] Hairer, M.; Iberti, M., Tightness of the Ising-Kac model on the two-dimensional torus, J. Stat. Phys., 171, 4, 632-655 (2018) · Zbl 1395.82134
[55] Hairer, M.; Matetski, K., Discretisations of rough stochastic PDEs, Ann. Probab., 46, 3, 1651-1709 (2018) · Zbl 1406.60094
[56] Hairer, M.; Mattingly, J., The strong feller property for singular stochastic pdes, Annales de l’Institut Henri Poincare Probabilites et Statistiques, 54, 1314-1340 (2018) · Zbl 1426.60088
[57] Iwata, K., An infinite dimensional stochastic differential equation with state space C(R), Probab. Theory Relat. Fields, 74, 1, 141-159 (1987) · Zbl 0587.60044
[58] Jaffe, A., Constructive quantum field theory, Math. Phys., 2000, 111-127 (2000) · Zbl 1074.81543
[59] Jaffe, A.: Quantum theory and relativity. In: Group Representations, Ergodic Theory, and Mathematical Physics: A Tribute to George W. Mackey, volume 449 of Contemp. Math., pp. 209-245. Am. Math. Soc., Providence, RI (2008) · Zbl 1154.81300
[60] Jaffe, A., Stochastic quantization, reflection positivity, and quantum fields, J. Stat. Phys., 161, 1, 1-15 (2015) · Zbl 1327.81260
[61] Jaffe, A.: Reflection positivity then and now. (2018). arXiv:1802.07880 [hep-th, physics:math-ph]
[62] Jona-Lasinio, G.; Mitter, PK, On the stochastic quantization of field theory, Commun. Math. Phys. (1965-1997), 101, 3, 409-436 (1985) · Zbl 0588.60054
[63] Jorgensen, P., Tian, F.: Reflection positivity, duality, and spectral theory. J. Appl. Math. Comput., (2018) · Zbl 1525.47130
[64] Khasminskii, R., Stochastic Stability of Differential Equations (2011), Berlin: Springer, Berlin
[65] Kupiainen, A., Renormalization group and stochastic PDEs, Annales Henri Poincaré, 17, 3, 497-535 (2016) · Zbl 1347.81063
[66] Lyons, TJ; Caruana, MJ; Lévy, T., Differential Equations Driven by Rough Paths: Ecole d’Eté de Probabilités de Saint-Flour XXXIV-2004 (2007), Berlin: Springer, Berlin · Zbl 1176.60002
[67] Lyons, T.; Qian, Z., System Control and Rough Paths (2002), Oxford: Oxford University Press, Oxford · Zbl 1029.93001
[68] Lebowitz, JL; Rose, HA; Speer, ER, Statistical mechanics of the nonlinear Schrödinger equation, J. Stat. Phys., 50, 3-4, 657-687 (1988) · Zbl 0925.35142
[69] Lebowitz, JL; Rose, HA; Speer, ER, Statistical mechanics of the nonlinear Schrödinger equation. II. Mean field approximation, J. Stat. Phys., 54, 1-2, 17-56 (1989) · Zbl 0850.35110
[70] Lyons, T.: Differential equations driven by rough signals. Revista Matemática Iberoamericana, pp. 215-310 (1998) · Zbl 0923.34056
[71] McKean, HP, Erratum: statistical mechanics of nonlinear wave equations. iv. cubic schrödinger, Commun. Math. Phys., 173, 3, 675 (1995) · Zbl 0838.60058
[72] McKean, HP, Statistical mechanics of nonlinear wave equations. iv. cubic schrödinger, Commun. Math. Phys., 168, 3, 479-491 (1995) · Zbl 0821.60069
[73] Meyer, Y.: Remarques sur un théorème de J.-M. Bony. In: Rendiconti del Circolo Matematico di Palermo. Serie II, pp. 1-20 (1981) · Zbl 0473.35021
[74] Martin, J., Perkowski, N.: Paracontrolled distributions on Bravais lattices and weak universality of the 2d parabolic Anderson model. Ann. Inst. H. Poincaré - Probabilités et Statistiques 55(4), 2058-2110 (2019) · Zbl 1446.60047
[75] Magnen, J., Sénéor, R.: The infinite volume limit of the \(\phi^4_3\) model. Ann. Inst. H. Poincaré Sect. A (N.S.) 24(2), 95-159 (1976)
[76] Mourrat, J-C; Weber, H., The dynamic \(\Phi^4_3\) model comes down from infinity, Commun. Math. Phys., 356, 3, 673-753 (2017) · Zbl 1384.81068
[77] Mourrat, J-C; Weber, H., Global well-posedness of the dynamic \(\Phi^4\) model in the plane, Ann. Probab., 45, 4, 2398-2476 (2017) · Zbl 1381.60098
[78] Moinat, A., Weber, H.: Space-time localisation for the dynamic \(\phi^4_3\) model (2018). doi:10.1002/cpa.21925 · Zbl 1455.35309
[79] Mourrat, J.-C., Weber, H., Xu, W.: Construction of \(\phi^4_3\) diagrams for pedestrians (2016). doi:10.1007/978-3-319-66839-0_1 · Zbl 1390.81266
[80] Nelson, E., Derivation of the Schrödinger equation from Newtonian mechanics, Phys. Rev., 150, 1079-1085 (1966)
[81] Nelson, E., Dynamical Theories of Brownian Motion (1967), Princeton: Princeton University Press, Princeton · Zbl 0165.58502
[82] Neeb, K.-H., Olafsson, G.: Reflection Positivity—A Representation Theoretic Perspective (2018). arXiv:1802.09037 · Zbl 1403.22001
[83] Nahmod, A.; Pavlović, N.; Staffilani, G., Almost sure existence of global weak solutions for supercritical Navier-Stokes equations, SIAM J. Math. Anal., 45, 6, 3431-3452 (2013) · Zbl 1355.76018
[84] Osterwalder, K.; Schrader, R., Axioms for Euclidean Green’s functions, Commun. Math. Phys., 31, 2, 83-112 (1973) · Zbl 0274.46047
[85] Osterwalder, K.; Schrader, R., Axioms for Euclidean Green’s functions II, Commun. Math. Phys., 42, 3, 281-305 (1975) · Zbl 0303.46034
[86] Park, YM, Convergence of lattice approximations and infinite volume limit in the \((\lambda \phi^4-\sigma \phi^2 -\tau \phi )_3\) field theory, J. Math. Phys., 18, 3, 354-366 (1977)
[87] Poland, D.; Rychkov, S.; Vichi, A., The conformal bootstrap: theory, numerical techniques, and applications, Rev. Mod. Phys., 91, 1, 015002 (2019)
[88] Poland, D.; Rychkov, S.; Vichi, A., The conformal bootstrap: theory, numerical techniques, and applications, Rev. Mod. Phys., 91, 1, 015002 (2019)
[89] Parisi, G.; Wu, YS, Perturbation theory without gauge fixing, Scientia Sinica. Zhongguo Kexue, 24, 4, 483-496 (1981) · Zbl 1480.81051
[90] Rivasseau, V., From Perturbative to Constructive Renormalization (1991), Princeton: Princeton University Press, Princeton
[91] Simon, B., \(P(\phi )_2\) Euclidean (Quantum) Field Theory (1974), Princeton: Princeton University Press, Princeton · Zbl 1175.81146
[92] Slade, G., Critical exponents for long-range \(o(n)\) models below the upper critical dimension, Commun. Math. Phys., 358, 1, 343-436 (2018) · Zbl 1391.82022
[93] Seiler, E.; Simon, B., Nelson’s symmetry and all that in the \({ Yukawa}_2\) and \((\phi^4)_3\) field theories, Ann. Phys., 97, 2, 470-518 (1976)
[94] Summers, S.J.: A Perspective on Constructive Quantum Field Theory (2012). arXiv:1203.3991 [math-ph]
[95] Symanzik, K.: A modified model of Euclidean quantum field theory. Courant Institute of Mathematical Sciences, Report IMM-NYU 327 (1964)
[96] Triebel, H., Theory of Function Spaces III (2006), Berlin: Springer, Berlin · Zbl 1104.46001
[97] Tzvetkov, N.: Random data wave equations (2016)
[98] Velo, G.; Wightman, A., Constructive Quantum Field Theory (1973), Berlin, New York: Springer, Berlin, New York · Zbl 0325.00006
[99] Watanabe, H., Block spin approach to \(\phi^4_3\) field theory, J. Stat. Phys., 54, 1-2, 171-190 (1989)
[100] Wightman, A.S.: Hilbert’s sixth problem: mathematical treatment of the axioms of physics, pp. 147-240 (1976) · Zbl 0339.46051
[101] Zabczyk, J.: Symmetric solutions of semilinear stochastic equations. In: Stochastic Partial Differential Equations and Applications II, pp. 237-256. Springer (1989) · Zbl 0701.60060
[102] Zhu, R.; Zhu, X., Lattice approximation to the dynamical \(\phi^4_3\) model, Ann. Probab., 46, 1, 397-455 (2018) · Zbl 1393.82014
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.