×

Renormalization group and stochastic PDEs. (English) Zbl 1347.81063

By using Wilsonian’s renormalization group (RG) approach, the existence, uniqueness and independence of regularization are investigated for stochastic partial differential equations on \(\mathbb T^3\) of type \[ \partial_t\varphi = \mathbb D\varphi -\varphi^3 -r \varphi +\Xi, \] where \(\Xi\) is a (non-local) space-time white noise. Moreover, the covariances of the noise contributions are estimated.

MSC:

81T17 Renormalization group methods applied to problems in quantum field theory
35R60 PDEs with randomness, stochastic partial differential equations
60H15 Stochastic partial differential equations (aspects of stochastic analysis)
60H20 Stochastic integral equations

References:

[1] Hairer, M.: A theory of regularity structures. Invent. Math. (2014). doi:10.1007/s00222-014-0505-4 · Zbl 1332.60093
[2] Catellier, R., Chouk, K.: Paracontrolled distributions and the 3-dimensional stochastic quantization equation. (2013), 2. arXiv:1310.6869 [math-ph] · Zbl 1433.60048
[3] Gubinelli, M., Imkeller, P., Perkowski, N.: Paracontrolled distributions and singular PDEs. (2012) arXiv:1210.2684 · Zbl 1333.60149
[4] Wilson, K.: http://www.nobelprize.org/nobelprizes/physics/laureates/1982/wilson-lecture
[5] Bricmont J., Kupiainen A., Lin G.: Renormalization group and asymptotics of solutions of nonlinear parabolic equations. Commun. Pure. Appl. Math. 47, 893-922 (1994) · Zbl 0806.35067 · doi:10.1002/cpa.3160470606
[6] Bricmont J., Gawedzki K., Kupiainen A.: KAM theorem and quantum field theory. Commun. Math. Phys. 201(3), 699-727 (1999) · Zbl 0938.37048 · doi:10.1007/s002200050573
[7] Unterberger, J.: Diffusive limit for 3-dimensional KPZ equation. (2) Generalized PDE estimates through Hamilton-Jacobi-Bellman formalism. arXiv:1312.5293 [math.AP]
[8] Glimm J.: Boson fields with the \[{:\phi^4:}\]:ϕ4: interaction in three dimensions. Commun. Math. Phys. 10, 1-47 (1968) · Zbl 0175.24702 · doi:10.1007/BF01654131
[9] Eckmann J.-P., Ostervalder K.: On the uniqueness of the Hamiltionian and of the representation of the CCR for the quartic boson interaction in three dimensions. Helv. Phys. Acta 44, 884-909 (1971)
[10] Glimm J., Jaffe A.: Positivity of the \[{\phi_3^4}\] ϕ34 Hamiltonian. Fortschr. Physik 21, 327-376 (1973) · doi:10.1002/prop.19730210702
[11] Feldman J.: The \[{\lambda\phi^4_3}\] λϕ34 field theory in a finite volume. Commun. Math. Phys. 37, 93-120 (1974) · doi:10.1007/BF01646205
[12] Feldman J.S., Ostervalder K.: The Wightman axioms and the mass gap for weakly coupled \[{\phi^4_3}\] ϕ34 quantum field theories. Ann. Phys. 97(1), 80-135 (1976) · doi:10.1016/0003-4916(76)90223-2
[13] Bogachev V.I.: Gaussian Measures (Mathematical Surveys and Monographs). American Mathematical Society, Providence (1998) · Zbl 0913.60035 · doi:10.1090/surv/062
[14] Nualart D.: The Malliavin calculus and related topics. Probability and its Applications (New York), second ed. Springer, Berlin (2006) · Zbl 1099.60003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.