×

Existence results for a class of \(p(x)\)-Kirchhoff-type equations with critical growth and critical frequency. (English) Zbl 1512.35258

Summary: This article deals with a class of \(p(x)\)-Laplace equations with critical growth and critical frequency. By using the variational methods and some analytical skills, we obtain the existence and multiplicity of nontrivial solutions for this problem. The novelty of this paper lies in two aspects: (1) this equation contains the degenerate case, which corresponds to the Kirchhoff term \(K\) vanishing at zero and (2) our paper is about the appearance of critical terms, which can be viewed as a partial extension of the results of X. Zhang et al. [Electron. J. Differ. Equ. 2018, Paper No. 31, 20 p. (2018; Zbl 1383.35091)] concerning the existence of solutions to this problem in the subcritical case.
©2023 American Institute of Physics

MSC:

35J60 Nonlinear elliptic equations
35J65 Nonlinear boundary value problems for linear elliptic equations
46E30 Spaces of measurable functions (\(L^p\)-spaces, Orlicz spaces, Köthe function spaces, Lorentz spaces, rearrangement invariant spaces, ideal spaces, etc.)

Citations:

Zbl 1383.35091
Full Text: DOI

References:

[1] Mihǎilescu, M.; Rǎdulescu, V., A multiplicity result for a nonlinear degenerate problem arising in the theory of electrorheological fluids, Proc. R. Soc. Edinburgh, Sect. A, 462, 2625-2641 (2006) · Zbl 1149.76692 · doi:10.1098/rspa.2005.1633
[2] Rajagopal, K. R.; Ružička, M., Mathematical modeling of electrorheological materials, Continuum Mech. Thermodyn., 13, 1, 59-78 (2001) · Zbl 0971.76100 · doi:10.1007/s001610100034
[3] Rajagopal, K. R.; Ružička, M., On the modeling of electrorheological materials, Mech. Res. Commun., 23, 4, 401 (1996) · Zbl 0890.76007 · doi:10.1016/0093-6413(96)00038-9
[4] Kováčik, O.; Rákosník, J., On spaces L^p(x) and W^k,p(x), Czech. Math. J., 41, 4, 592-618 (1991) · Zbl 0784.46029 · doi:10.21136/CMJ.1991.102493
[5] Diening, L.; Harjulehto, P.; Hästö, P.; Ružička, M.; Drabek, P.; Rakosnik, J., Open problems in variable exponent Lebesgue and Sobolev spaces, 38-58 (2004), Springer-Verlag Berlin Heidelberg: Springer-Verlag Berlin Heidelberg, Milovy, Czech Republic
[6] Ilias, P., Existence and multiplicity of solutions of a p(x)-Laplacian equation in a bounded domain, Rev. Roum. Math. Pures Appl., 52, 6, 639-654 (2007) · Zbl 1174.35009
[7] Saintier, N.; Silva, A., Local existence conditions for an equations involving the p(x)-Laplacian with critical exponent in \(\mathbb{R}^{\mathbb{N}} \), Nonlinear Differ. Equations Appl., 24, 2, 19 (2017) · Zbl 1377.35123 · doi:10.1007/s00030-017-0441-2
[8] Liu, J.; Pucci, P.; Wu, H.; Zhang, Q., Existence and blow-up rate of large solutions of p(x)-Laplacian equations with gradient terms, J. Math. Anal. Appl., 457, 944-977 (2018) · Zbl 1378.35148 · doi:10.1016/j.jmaa.2017.08.038
[9] Pucci, P.; Zhang, Q., Existence of entire solutions for a class of variable exponent elliptic equations, J. Differ. Equations, 257, 1529-1566 (2014) · Zbl 1292.35135 · doi:10.1016/j.jde.2014.05.023
[10] Zhang, X.; Zhang, C.; Gao, H., Solutions for p(x)-Laplace equations with critical growth and critical frequency, Electron. J. Differ. Equations, 2018, 1-20 · Zbl 1383.35091
[11] Liang, S.; Zhang, J., Infinitely many small solutions for the p(x)-Laplacian operator with nonlinear boundary conditions, Ann. Mat. Pura Appl., 192, 1-16 (2013) · Zbl 1266.35093 · doi:10.1007/s10231-011-0209-y
[12] Fu, Y.; Zhang, X., Multiple solutions for a class of p(x)-Laplacian equations in \(\mathbb{R}^N\) involving the critical exponent, Proc. R. Soc. London, Ser. A, 466, 1667-1686 (2010) · Zbl 1189.35128 · doi:10.1098/rspa.2009.0463
[13] Ho, K.; Kim, Y.-H.; Sim, I., Existence results for Schrödinger p(·)-Laplace equations involving critical growth in \(\mathbb{R}^{\mathbb{N}} \), Nonlinear Anal., 182, 20-44 (2019) · Zbl 1421.35132 · doi:10.1016/j.na.2018.12.004
[14] Dai, G.; Hao, R., Existence of solutions for a p(x)-Kirchhoff-type equation, J. Math. Anal. Appl., 359, 1, 275-284 (2009) · Zbl 1172.35401 · doi:10.1016/j.jmaa.2009.05.031
[15] Dai, G.; Ma, R., Solutions for a p(x)-Kirchhoff type equation with Neumann boundary data, Nonlinear Anal.: Real World Appl., 12, 5, 2666-2680 (2011) · Zbl 1225.35079 · doi:10.1016/j.nonrwa.2011.03.013
[16] Böer, E. de S.; Miyagaki, O. H.; Pucci, P., Existence and multiplicity results for a class of Kirchhoff-Choquard equations with a generalized sign-changing potential, Atti Accad. Naz. Lincei, Cl. Sci. Fis., Mat. Nat., 33, 651-675 (2022) · Zbl 1512.35292 · doi:10.4171/rlm/984
[17] Liang, S.; Pucci, P.; Zhang, B., Existence and multiplicity of solutions for a class of critical nonlocal equations with variable exponents, Appl. Anal., 2022, 1-24 · Zbl 1523.35285 · doi:10.1080/00036811.2022.2107916
[18] Lions, P. L., The concentration compactness principle in the calculus of variations. The locally compact case, Part II, Ann. Inst. Henri Poincare, 1, 223-283 (1984) · Zbl 0704.49004 · doi:10.1016/s0294-1449(16)30422-x
[19] Lions, P. L., The concentration compactness principle in the calculus of variations. The locally compact case, Part I, Ann. Inst. Henri Poincare, 1, 109-145 (1984) · Zbl 0541.49009 · doi:10.1016/s0294-1449(16)30428-0
[20] Ben-Naoum, A. K.; Troestler, C.; Willem, M., Extrema problems with critical Sobolev exponents on unbounded domains, Nonlinear Anal., 26, 823-833 (1996) · Zbl 0851.49004 · doi:10.1016/0362-546x(94)00324-b
[21] Chabrowski, J., Concentration-compactness principle at infinity and semilinear elliptic equations involving critical and subcritical Sobolev exponents, Calculus Var. Partial Differ. Equations, 3, 493-512 (1995) · Zbl 0838.35035 · doi:10.1007/bf01187898
[22] Diening, L.; Harjulehto, P.; Hasto, P.; Ruzicka, M., Lebesgue and Sobolev Spaces with Variable Exponents (2011), Springer-Verlag: Springer-Verlag, Heidelberg · Zbl 1222.46002
[23] Fan, X.; Zhao, D., On the spaces L^p(x)(Ω) and W^m,p(x)(Ω), J. Math. Anal. Appl., 263, 424-446 (2001) · Zbl 1028.46041 · doi:10.1006/jmaa.2000.7617
[24] Cruz-Uribe, D.; Fiorenza, A., Variable Lebesgue Spaces: Foundations and Harmonic Analysis (2013), Springer: Springer, Basel · Zbl 1268.46002
[25] Biswas, R.; Tiwari, S., Variable order nonlocal Choquard problem with variable exponents, Complex Var. Elliptic Equations, 66, 5, 853-875 (2021) · Zbl 1466.35153 · doi:10.1080/17476933.2020.1751136
[26] Boureanu, M.-M.; Rădulescu, V.; Repovš, D., On a p(·)-biharmonic problem with no-flux boundary condition, Comput. Math. Appl., 72, 9, 2505-2515 (2016) · Zbl 1458.35163 · doi:10.1016/j.camwa.2016.09.017
[27] Antontsev, S.; Chipot, M.; Xie, Y., Uniquenesss results for equation of the p(x)-Laplacian type, Adv. Math. Sci. Appl., 17, 1, 287-304 (2007) · Zbl 1132.35362
[28] Coffman, C. V., A minimum-maximum principle for a class of non-linear integral equations, J. Anal. Math., 22, 1, 391-419 (1969) · Zbl 0179.15601 · doi:10.1007/bf02786802
[29] Chabrowski, J., Variational Methods for Potential Operator Equations (1997), de Gruyter: de Gruyter, Berlin · Zbl 0895.35036
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.