×

Local existence conditions for an equations involving the \(p(x)\)-Laplacian with critical exponent in \(\mathbb R^N\). (English) Zbl 1377.35123

Summary: The purpose of this paper is to formulate sufficient existence conditions for a critical equation involving the \(p(x)\)-Laplacian of the form \((0.1)\) below posed in \(\mathbb R^N\). This equation is critical in the sense that the source term has the form \(K(x)|u|^{q(x)-2}u\) with an exponent \(q\) that can be equal to the critical exponent \(p^*\) at some points of \(\mathbb R^N\) including at infinity. The sufficient existence condition we find are local in the sense that they depend only on the behaviour of the exponents \(p\) and \(q\) near these points. We stress that we do not assume any symmetry or periodicity of the coefficients of the equation and that \(K\) is not required to vanish in some sense at infinity like in most existing results. The proof of these local existence conditions is based on a notion of localized best Sobolev constant at infinity and a refined concentration-compactness at infinity.

MSC:

35J92 Quasilinear elliptic equations with \(p\)-Laplacian

References:

[1] Alves, C.O., Ferreira, M.C.: Multi-bump solutions for a class of quailinear problems involving variable exponents (to appear) · Zbl 1335.35079
[2] Alves, C.O., Souto, M.A.S.: Existence of solutions for a class of problems in \[\mathbb{R}^nRn\] involving the \[p(x)\] p(x)-Laplacian. In: Contributions to Nonlinear Analysis, Volume 66 of Programming Nonlinear Differential Equations Applications, pp. 17-32. Birkhäuser, Basel, (2006) · Zbl 1193.35082
[3] Alves, C.O.: Existence of solution for a degenerate p(x)-Laplacian equation in \[\mathbb{R}^nRn\]. J. Math. Anal. Appl. 345, 731-742 (2008) · Zbl 1146.35044 · doi:10.1016/j.jmaa.2008.04.060
[4] Alves, C.O.: Existence of radial solutions for a class of \[p(x)\] p(x)-laplacian with critical growth. Differ. Integral Equ. 23(1/2), 113-123 (2010) · Zbl 1240.35182
[5] Alves, O., Ferreira, M.C.: Nonlinear perturbations of a \[p(x)\] p(x)-Laplacian equation with critical growth in \[\mathbb{R}^nRn\]. Math. Nachr. 287(8-9), 849-868 (2014) · Zbl 1298.35092 · doi:10.1002/mana.201200336
[6] Alves, C.O., Ferreira, M.C.: Existence of solutions for a class of \[p(x)\] p(x)-Laplacian equations involving a concave-convex nonlinearity with critical growth in \[\mathbb{R}^nRn\]. Topol. Methods Nonlinear Anal. 45(2), 399-422 (2015) · Zbl 1371.35131 · doi:10.12775/TMNA.2015.020
[7] Aubin, T.: Problèmes isopérimétriques et espaces de Sobolev. J. Differ. Geom. 11(4), 573-598 (1976) · Zbl 0371.46011 · doi:10.4310/jdg/1214433725
[8] Bonder, J.F., Saintier, N., Silva, A.: Critical Sobolev embeddings in variable exponent spaces and applications. Springer Briefs. Springer, Berlin (in preparation) · Zbl 1382.46021
[9] Bonder, J.F., Saintier, N., Silva, A.: Existence of solution to a critical equation with variable exponent. Ann. Acad. Sci. Fenn. Math. 37, 579-594 (2012) · Zbl 1263.35118 · doi:10.5186/aasfm.2012.3743
[10] Bonder, J.F., Saintier, N., Silva, A.: On the Sobolev embedding theorem for variable exponent spaces in the critical range. J. Differ. Equ. 253(5), 1604-1620 (2012) · Zbl 1259.46028 · doi:10.1016/j.jde.2012.05.020
[11] Bonder, J.F., Saintier, N., Silva, A.: On the Sobolev trace theorem for variable exponent spaces in the critical range. Annali di Matematica Pura ed Aplicata 193(6), 1607-1628 (2014) · Zbl 1314.46041 · doi:10.1007/s10231-013-0346-6
[12] Bonder, J.F., Saintier, N., Silva, A.: Existence of solution to a critical trace equation with variable exponent. Asymp. Anal. 93(1-2), 161-185 (2015) · Zbl 1337.35061
[13] Bonder, J.F., Silva, A.: Concentration-compactness principle for variable exponent spaces and applications. Electron. J. Differ. Equ. 141, 18 (2010) · Zbl 1200.35073
[14] Brézis, H., Nirenberg, L.: Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents. Commun. Pure Appl. Math. 36(4), 437-477 (1983) · Zbl 0541.35029 · doi:10.1002/cpa.3160360405
[15] Chabrowski, J.: Concentration-compactness principle at infinity and semilinear elliptic equations involving critical and subcritical Sobolev exponents. Calc. Var. Partial Differ. Equ. 3(4), 493-512 (1995) · Zbl 0838.35035 · doi:10.1007/BF01187898
[16] Chen, Y., Levine, S., Rao, M.: Variable exponent, linear growth functionals in image restoration. SIAM J. Appl. Math. 66(4), 1383-1406 (2006). (electronic) · Zbl 1102.49010 · doi:10.1137/050624522
[17] Diening, L., Harjulehto, P., Hästö, P., Ružička, M.: Lebesgue and Sobolev spaces with Variable Exponents, Volume 2017 of Lecture Notes in Mathematics. Springer, Heidelberg (2011) · Zbl 1222.46002
[18] Druet, O., Hebey, E., Robert, F.: Blow-Up Theory for Elliptic PDEs in Riemannian Geometry, Volume 45 of Mathematical Notes. Princeton University Press, Princeton (2004) · Zbl 1059.58017
[19] Fan, X.: A constrained minimization problem involving the \[p(x)\] p(x)-Laplacian in \[\mathbb{R}^nRn\]. Nonlinear Anal. 69, 3661-3670 (2008) · Zbl 1159.35326 · doi:10.1016/j.na.2007.10.002
[20] Fan, X.: \[p(x)\] p(x)-Laplacian equations in \[\mathbb{R}^nRn\] with periodic data and nonperiodic perturbations. J. Math. Anal. Appl. 341, 103-119 (2008) · Zbl 1135.35034 · doi:10.1016/j.jmaa.2007.10.006
[21] Fan, X., Xiaoyou, H.: Existence and multiplicity of solutions for p(x)-Laplacian equations in \[\mathbb{R}^nRn\]. Nonlinear Anal. 59, 173-188 (2004) · Zbl 1134.35333
[22] Futamura, T., Mizuta, Y., Shimomura, T.: Integrability of maximal functions and Riesz potentials in Orlicz spaces of variable exponent. J. Math. Anal. Appl. 366, 391-417 (2010) · Zbl 1193.46016 · doi:10.1016/j.jmaa.2010.01.053
[23] Gilbarg, D., Trudinger, N.S.: Ellitpic Partial Differential Equations of Second-Order, Volume 1748 of Classics in Mathematics. Springer, Berlin (2001) · Zbl 1042.35002
[24] Harjulehto, P., Hästö, P., Le, U.V., Matti, N.: Overview of differential equations with non-standard growth. Nonlinear Anal. 72, 4551-4574 (2010) · Zbl 1188.35072 · doi:10.1016/j.na.2010.02.033
[25] Hästö, P.A.: Local-to-global results in variable exponent spaces. Math. Res. Lett. 16(2), 263-278 (2009) · Zbl 1184.46033 · doi:10.4310/MRL.2009.v16.n2.a5
[26] Lee, J.M.: Riemannian Manifolds, An Introduction to Curvature, Volume of 176 Graduate Texts in Mathematics. Springer, Berlin (1997) · Zbl 0905.53001
[27] Liang, S., Zhang, J.: Multiple solutions for noncooperative \[p(x)\] p(x)-Laplacian equations in \[\mathbb{R}^nRn\] involving the critical exponent. J. Math. Anal. Appl. 403, 344-356 (2013) · Zbl 1318.35027 · doi:10.1016/j.jmaa.2013.01.003
[28] Lions, P.-L.: Symétrie et compacité dans les espaces de sobolev. J. Funct. Anal. 49, 315-334 (1982) · Zbl 0501.46032 · doi:10.1016/0022-1236(82)90072-6
[29] Lions, P.-L.: The concentration-compactness principle in the calculus of variations. The limit case. I. Rev. Mat. Iberoam. 1(1), 145-201 (1985) · Zbl 0704.49005 · doi:10.4171/RMI/6
[30] Mizuta, Y., Ohno, T., Shimomura, T., Shioji, N.: Compact embeddings for Sobolev spaces of variable exponents and existence of solutions for nonlinear elliptic problems involving the \[p(x)\] p(x)-Laplacian and its critical exponent. Ann. Acad. Sci. Fenn. Math. 35(1), 115-130 (2010) · Zbl 1202.46034 · doi:10.5186/aasfm.2010.3507
[31] Nekvinda, A.: Equivalence of \[l^{\{p_n\}}\] l{pn} norms and shift operators. Math. Inequal. Appl. 5(4), 711-723 (2002) · Zbl 1029.46024
[32] Radulescu, V.D.: Nonlinear elliptic equations with variable eponent: old and new. Nonlinear Anal. 121, 336-369 (2015) · Zbl 1321.35030 · doi:10.1016/j.na.2014.11.007
[33] Radulescu, V.D., Repovš, D.D.: Partial Differential Equations with Variable Exponents. Variational Methods and Qualitative Analysis. Monographs and Research Notes in Mathematics. CRC Press, Boca Raton (2015) · Zbl 1343.35003 · doi:10.1201/b18601
[34] Ružička, M.: Electrorheological Fluids: Modeling and Mathematical Theory, Volume 1748 of Lecture Notes in Mathematics. Springer, Berlin (2000) · Zbl 0968.76531
[35] Saintier, N.: Asymptotic estimates and blow-up theory for critical equations involving the \[p\] p-Laplacian. Calc. Var. Partial Differ. Equ. 25(3), 299-331 (2006) · Zbl 1357.35132 · doi:10.1007/s00526-005-0344-7
[36] Saintier, N.: Estimates of the best Sobolev constant of the embedding of \[bv(\omega )\] bv(ω) into \[l^1(\partial \omega )\] l1(∂ω) and related shape optimization problems. Nonlinear Anal. TMA 69, 2479-2491 (2008) · Zbl 1151.49036 · doi:10.1016/j.na.2007.08.026
[37] Saintier, N.: Asymptotic in Sobolev spaces for symmetric Paneitz-type equations on Riemannian manifolds. Calc. Var. Partial Differ. Equ. 35, 385-407 (2009) · Zbl 1171.35045 · doi:10.1007/s00526-008-0213-2
[38] Strauss, W.A.: Existence of solitary waves in higher dimensions. Commun. Math. Phys. 55, 149-162 (1977) · Zbl 0356.35028 · doi:10.1007/BF01626517
[39] Yongqiang, F.: The principle of concentration compactness in \[L^{p(x)}\] Lp(x) spaces and its application. Nonlinear Anal. 71(5-6), 1876-1892 (2009) · Zbl 1170.35402
[40] Yongqiang, F., Shan, Y.: On the removability of isolated singular points for elliptic equations involving variable exponent. Adv. Nonlinear Anal. 5(2), 1-12 (2016) · Zbl 1338.35014
[41] Yongqiang, F., Zhang, X.: A multiplicity result for p(x)-Laplacian problem in \[\mathbb{R}^nRn\]. Nonlinear Anal. 70, 2261-2269 (2009) · Zbl 1156.35363 · doi:10.1016/j.na.2008.03.038
[42] Yongqiang, F., Zhang, X.: Multiple solutions for a class of \[p(x)\] p(x)-Laplacian equations in involving the critical exponent. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 466(2118), 1667-1686 (2010) · Zbl 1189.35128
[43] Yongqiang, F., Zhang, X.: Solutions of \[p(x)\] p(x)-Laplacian equations with critical exponent and perturbations in \[\mathbb{R}^nRn\]. Electron. J. Differ. Equ. 2012(120), 1-14 (2012) · Zbl 1259.35098
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.