×

Estimates of the best Sobolev constant of the embedding of \(\mathrm{BV}(\Omega)\) into \(L^1(\partial \Omega)\) and related shape optimization problems. (English) Zbl 1151.49036

Summary: We find estimates for the optimal constant in the critical Sobolev trace inequality \(\lambda _{1}(\Omega )\| u\| _{L^1(\partial \Omega)}\leq \| u\| _{W^{1,1}}(\Omega)\) that are independent of \(\Omega \). These estimates generalize those of J. Fernández Bonder and N. Saintier, Ann. Mat. Pura Appl. (4) 187, No. 4, 683–704 (2008; Zbl 1223.35131)] concerning the \(p\)-Laplacian to the case \(p=1\).
We apply our results to prove the existence of an extremal for this embedding. We then study an optimal design problem related to \(\lambda _{1}\), and eventually compute the shape derivative of the functional \(\Omega \rightarrow \lambda _{1}(\Omega )\).

MSC:

49Q10 Optimization of shapes other than minimal surfaces
35P15 Estimates of eigenvalues in context of PDEs
49Q20 Variational problems in a geometric measure-theoretic setting

Citations:

Zbl 1223.35131

References:

[1] Ambrosio, L.; Fusco, N.; Pallara, D., Functions of bounded variations and free discontinuity problems, (Oxford Mathematical Monographs (2000), The Clarendon Press, Oxford University Press: The Clarendon Press, Oxford University Press New York) · Zbl 0957.49001
[2] Andreu, F.; Mazon, J. M.; Rossi, J. D., The best constant for the Sobolev embedding form \(W^{1, 1}(\Omega)\) into \(L^1(\partial \Omega)\), Nonlinear Anal., 59, 1125-1145 (2004) · Zbl 1108.35067
[3] Aubin, T., Equations différentielles non-linéaires et le problème de Yamabé concernant la courbure scalaire, J. Math. Pures Appl., 55, 269-296 (1976) · Zbl 0336.53033
[4] Cherkaev, A.; Cherkaeva, E., Optimal design for uncertain loading condition, (Homogenization. Homogenization, Ser. Adv. Math. Appl. Sci., vol. 50 (1999), World Sci. Publishing: World Sci. Publishing River Edge, NJ), 193-213 · Zbl 1055.74549
[5] Demengel, F., On some nonlinear equation involving the 1-laplacian and trace map inequalities, Nonlinear Anal., 48, 1151-1163 (2002) · Zbl 1016.49001
[6] Demengel, F., On some nonlinear partial differential equations involving the 1-Laplacian and critical Sobolev exponent, ESAIM, 4, 667-686 (1999) · Zbl 0939.35070
[7] Druet, O.; Hebey, E., The \(A B\) program in geometric analysis: Sharp Sobolev inequalities and related problems, Mem. Amer. Math. Soc., 160 (2002) · Zbl 1023.58009
[8] Evans, L. C.; Gariepy, R. F., Measure theory and fine properties of functions, (Studies in Advanced Math. (1992), CRC Press: CRC Press Ann Harbor) · Zbl 0626.49007
[9] J. Fernandez Bonder, N. Saintier, Estimates for the Sobolev trace constant with critical exponent and applications, Ann. Mat. Pura. Aplicata (in press); J. Fernandez Bonder, N. Saintier, Estimates for the Sobolev trace constant with critical exponent and applications, Ann. Mat. Pura. Aplicata (in press) · Zbl 1223.35131
[10] Fernández Bonder, J.; Rossi, J. D.; Wolanski, N., On the best Sobolev trace constant and extremals in domains with holes, Bull. Sci. Math., 130, 565-579 (2006) · Zbl 1115.35046
[11] Fernández Bonder, J.; Rossi, J. D.; Wolanski, N., Regularity of the free boundary in an optimization problem related to the best Sobolev trace constant, SIAM J. Control Optim., 44, 5, 1614-1635 (2006) · Zbl 1134.35036
[12] Giusti, E., Minimal surfaces and functions of bounded variation, (Monographs in Mathematics (1984), Birkhäuser) · Zbl 0545.49018
[13] Hebey, E.; Saintier, N., Stability and perturbations of the domain for the first eigenvalue of the 1-laplacian, Arch. Math., 86, 4, 340-351 (2006) · Zbl 1099.58012
[14] Henrot, A.; Pierre, M., Variation et optimisation de formes - une analyse géométrique, (Mathématiques et applications, vol. 48 (2005), Springer: Springer Berlin, New York) · Zbl 1098.49001
[15] Ionescu, I. R.; Lachand-Robert, T., Generalized Cheeger sets related to landslides, Calc. Var. Partial Differential Equations, 23, 227-249 (2005) · Zbl 1062.49036
[16] Lions, P. L., The concentration-compactness principle in the calculus of variations—the limit case part. 2, Rev. Mat. Iberoamericana, 1, 2, 45-121 (1985) · Zbl 0704.49006
[17] S. Luckhaus, L. Modica, The Gibbs-Thompson relation within the gradient theory of phase transitions, ARMA 107 (1) 71-83; S. Luckhaus, L. Modica, The Gibbs-Thompson relation within the gradient theory of phase transitions, ARMA 107 (1) 71-83 · Zbl 0681.49012
[18] V.G. Maz’ya, Sobolev Spaces, in: Springer Series in Soviet Mathematics, Berlin, New York, 1985; V.G. Maz’ya, Sobolev Spaces, in: Springer Series in Soviet Mathematics, Berlin, New York, 1985
[19] Motron, M., Around the best constants for the Sobolev trace map from \(W^{1, 1}(\Omega)\) into \(L^1(\partial \Omega)\), Asymptot. Anal., 29, 69-90 (2002) · Zbl 1147.46305
[20] Reshetnyak, Yu. G., Weak convergence of completely additive vector functions on a set, Siberian Math. J., 9, 1039-1045 (1968), Translated from Sibirskii Mathematicheskii Zhurnal 9 (1968) 1386-1394 · Zbl 0176.44402
[21] N. Saintier, Shape derivative of the first eigenvalue of the 1-Laplacian (submitted for publication); N. Saintier, Shape derivative of the first eigenvalue of the 1-Laplacian (submitted for publication)
[22] Ziemer, W. P., Weakly differentiable functions. Sobolev spaces and functions of bounded variations, (Graduate Texts in Mathematics, vol. 120 (1989), Springer-Verlag) · Zbl 0165.06802
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.