×

Clarkson-McLeod solutions of the fourth Painlevé equation and the parabolic cylinder-kernel determinant. (English) Zbl 1509.30027

Summary: The Clarkson-McLeod solutions of the fourth Painlevé equation behave like \(\kappa D_{\alpha - \frac{1}{2}}^2 (\sqrt{2} x)\) as \(x \to +\infty\), where \(\kappa\) is some real constant and \(D_{\alpha - \frac{1}{2}} (x)\) is the parabolic cylinder function. Using the Deift-Zhou nonlinear steepest descent method, we derive the asymptotic behaviors for this class of solutions as \(x \to - \infty\). This completes a proof of Clarkson and McLeod’s conjecture on the asymptotics of this family of solutions. The total integrals of the Clarkson-McLeod solutions and the asymptotic approximations of the \(\sigma\)-form of this family of solutions are also derived. Furthermore, we find a determinantal representation of the \(\sigma\)-form of the Clarkson-McLeod solutions via an integrable operator with the parabolic cylinder kernel.

MSC:

30E25 Boundary value problems in the complex plane
30E15 Asymptotic representations in the complex plane
33E17 Painlevé-type functions
41A60 Asymptotic approximations, asymptotic expansions (steepest descent, etc.)

Software:

DLMF

References:

[1] Abdullayev, A. S., Justification of asymptotic formulas for the fourth Painlevé equation, Stud. Appl. Math., 99, 255-283 (1997) · Zbl 0887.34007
[2] Baik, J.; Buckingham, R.; DiFranco, J., Asymptotics of Tracy-Widom distributions and the total integral of a Painlevé II function, Commun. Math. Phys., 280, 463-497 (2008) · Zbl 1221.33032
[3] Baik, J.; Buckingham, R.; DiFranco, J.; Its, A. R., Total integrals of global solutions to Painlevé II, Nonlinearity, 22, 1021-1061 (2009) · Zbl 1179.33036
[4] Bassom, A. P.; Clarkson, P. A.; Hicks, A. C., Bäcklund transformations and solution hierarchies for the fourth Painlevé equation, Stud. Appl. Math., 95, 1-71 (1995) · Zbl 0846.34006
[5] Bassom, A. P.; Clarkson, P. A.; Hicks, A. C., Numerical studies of the fourth Painlevé equation, IMA J. Appl. Math., 50, 167-193 (1993) · Zbl 0782.65099
[6] Bassom, A. P.; Clarkson, P. A.; Hicks, A. C.; McLeod, J. B., Integral equations and exact solutions for the fourth Painlevé equation, Proc. R. Soc. A, 437, 1-24 (1992) · Zbl 0751.34002
[7] Bothner, T.; Its, A. R., The nonlinear steepest descent approach to the singular asymptotics of the second Painlevé transcendent, Physica D, 241, 2204-2225 (2012) · Zbl 1266.34142
[8] Chen, Y.; Pruessner, G., Orthogonal polynomials with discontinuous weights, J. Phys. A, 38, L191-L198 (2005) · Zbl 1109.42005
[9] Clarkson, P. A.; McLeod, J. B., Integral equations and connection formulae for the Painlevé equations, (Winternitz, P.; Levi, D., Painlevé Transcendents, Their Asymptotics and Physical Applications (1992)), 1-31 · Zbl 0856.34009
[10] Dai, D.; Xu, S.-X.; Zhang, L., On integrals of the tronquée solutions and the associated Hamiltonians for the Painlevé II equation, J. Differ. Equ., 269, 2430-2476 (2020) · Zbl 1450.34066
[11] Deift, P., Orthogonal Polynomials and Random Matrices: A Riemann-Hilbert Approach, Courant Lecture Notes, vol. 3 (1999), New York University
[12] Deift, P.; Zhou, X., A steepest descent method for oscillatory Riemann-Hilbert problems. Asymptotics for the MKdV equation, Ann. Math., 137, 295-368 (1993) · Zbl 0771.35042
[13] Deift, P.; Zhou, X., Asymptotics for the Painlevé II equation, Commun. Pure Appl. Math., 48, 277-337 (1995) · Zbl 0869.34047
[14] Fokas, A. S.; Its, A. R.; Kapaev, A. A.; Novokshenov, V. Y., Painlevé Transcendents: The Riemann-Hilbert Approach, Math. Surv. Monog., vol. 128 (2006), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI · Zbl 1111.34001
[15] Forrester, P.; Witte, N., Application of the τ-function theory of Painlevé equations to random matrices: PIV, PII and the GUE, Commun. Math. Phys., 219, 357-398 (2001) · Zbl 1042.82019
[16] Hu, W. Y., Singular asymptotics for solutions of the inhomogeneous Painlevé II equation, Nonlinearity, 32, 3843-3872 (2019) · Zbl 1430.34098
[17] Its, A. R.; Izergin, A. G.; Korepin, V. E.; Slavnov, N. A., Differential equations for quantum correlation functions, Int. J. Mod. Phys. B, 4, 1003-1037 (1990) · Zbl 0719.35091
[18] Its, A. R.; Kapaev, A. A., Connection formulae for the fourth Painlevé transcendent: Clarkson-McLeod solution, J. Phys. A, 31, 4073-4113 (1998) · Zbl 0898.34006
[19] Jimbo, M.; Miwa, T.; Ueno, K., Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. I. General theory and τ-function, Physica D, 2, 306-352 (1981) · Zbl 1194.34167
[20] Jimbo, M.; Miwa, T., Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. II, Physica D, 2, 407-448 (1981) · Zbl 1194.34166
[21] Kapaev, A. A., Connection formulae for the degenerated asymptotic solutions of the fourth Painlevé equation
[22] Kokocki, P., Total integrals of Ablowitz-Segur solutions for the inhomogeneous Painlevé II equation, Stud. Appl. Math., 144, 504-547 (2020) · Zbl 1457.34129
[23] Miller, P. D., On the increasing tritronquée solutions of the Painlevé-II equation, SIGMA, 14, 125 (2018) · Zbl 1408.34071
[24] (Olver, F. W.J.; Olde Daalhuis, A. B.; Lozier, D. W.; Schneider, B. I.; Boisvert, R. F.; Clark, C. W.; Miller, B. R.; Saunders, B. V., NIST Digital Library of Mathematical Functions (2020))
[25] Tracy, C.; Widom, H., Fredholm determinants, differential equations and matrix models, Commun. Math. Phys., 159, 151-174 (1994) · Zbl 0789.35152
[26] Vanlessen, M., Strong asymptotics of the recurrence coefficients of orthogonal polynomials associated to the generalized Jacobi weight, J. Approx. Theory, 125, 198-237 (2003) · Zbl 1037.42026
[27] Wong, R.; Zhang, H. Y., On the connection formulas of the fourth Painlevé transcendent, Anal. Appl., 4, 419-448 (2009) · Zbl 1182.33034
[28] Xia, J.; Xu, S.-X.; Zhao, Y.-Q., Singular asymptotics for the Clarkson-McLeod solutions of the fourth Painlevé equation, Physica D, 434, Article 133254 pp. (2022) · Zbl 1491.34100
[29] Zhou, J.-R.; Xu, S.-X.; Zhao, Y.-Q., Uniform asymptotics of a system of Szegő class polynomials via the Riemann-Hilbert approach, Anal. Appl., 9, 447-480 (2011) · Zbl 1242.41036
[30] Zhou, J.-R.; Zhao, Y.-Q., Uniform asymptotics of the Pollaczek polynomials via the Riemann-Hilbert approach, Proc. R. Soc. Lond. Ser. A, 464, 2091-2112 (2008) · Zbl 1145.33302
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.