×

Takasaki’s rational fourth Painlevé-Calogero system and geometric regularisability of algebro-Painlevé equations. (English) Zbl 1532.34091

K. Okamoto [Proc. Japan Acad., Ser. A 56, 264–268 (1980; Zbl 0476.34010)] provided an equivalent first-order non-autonomous Hamiltonian system for each of the Painlevé equations, and constrcuted an extended phase space on which the system is everywhere regular. In this paper, the authors propose a notion of regularisation for the class of systems with globally finite branching about movable singularities in the sense of the algebro-geometric property. They start with a case study, a non-autonomous rational Hamiltonian system obtained by K. Takasaki [J. Math. Phys. 42, No. 3, 1443–1473 (2001; Zbl 1016.34089)]. This system does not possess the Painlevé property, but is mapped by a rational transformation to the fourth Painlevé equation. They start constructing a family of rational surfaces which provide a manifold on which the system is either regular or regularisable; then they provide a global Hamiltonian structure on such manifold and compare it to that of Painlevé IV on Okamoto space’s due to T. Matano et al. [J. Math. Soc. Japan 51, No. 4, 843–866 (1999; Zbl 0941.34076)]. The notion of global regularisability on bundles of rational surfaces by similar algebraic transformations is then introduced and applied to a suite of examples including one by R. Halburd and T. Kecker [“Local and global finite branching of solutions of ordinary differential equations”, in: Reports and studies in forestry and natural sciences. University of Eastern Finland. 57–58 (2014)].

MSC:

34M55 Painlevé and other special ordinary differential equations in the complex domain; classification, hierarchies

References:

[1] Bassom, A. P.; Clarkson, P. A.; Hicks, A. C.; McLeod, J. B., Integral equations and exact solutions for the fourth Painlevé equation, Proc. R. Soc. A, 437, 1-24 (1992) · Zbl 0751.34002 · doi:10.1098/rspa.1992.0043
[2] Clarkson, P. A.; McLeod, J. B.; Winternitz, P.; Levi, D., Integral equations and connection formulae for the Painlevé equations, Painlevé Transcendents, Their Asymptotics and Physical Applications, pp 1-31 (1992), Springer · Zbl 0856.34009
[3] Bertola, M.; Cafasso, M.; Rubtsov, V., Noncommutative Painlevé equations and systems of Calogero type, Commun. Math. Phys., 363, 503-30 (2018) · Zbl 1402.34092 · doi:10.1007/s00220-018-3210-0
[4] Calogero, F., Solution of the one-dimensional N-body problem with quadratic and/or inversely quadratic pair potentials, J. Math. Phys., 12, 419-36 (1971) · doi:10.1063/1.1665604
[5] Chiba, H., The first, second and fourth Painlevé equations on weighted projective spaces, J. Differ. Equ., 260, 1263-313 (2016) · Zbl 1331.34166 · doi:10.1016/j.jde.2015.09.020
[6] Filipuk, G.; Halburd, R., Movable algebraic singularities of second-order ordinary differential equations, J. Math. Phys., 50 (2009) · Zbl 1202.34152 · doi:10.1063/1.3068414
[7] Fuchs, R., Sur quelques équations différentielles linéaires du second ordre, C. R. Acad. Sci., Paris, 141, 555-88 (1905) · JFM 36.0397.02
[8] Gromak, V. I.; Laine, I.; Shimomura, S., Painlevé Differential Equations in the Complex Plane (De Gruyter Studies in Mathematics vol 28) (2002), Walter de Gruyter & Co · Zbl 1043.34100
[9] Guillot, A., Meromorphic vector fields with single-valued solutions on complex surfaces, Adv. Math., 354 (2019) · Zbl 1425.34106 · doi:10.1016/j.aim.2019.106742
[10] Halburd, R.; Kecker, T., Local and global finite branching of solutions of ordinary differential equations, pp 57-58 (2014)
[11] Hinkkanen, A.; Laine, I., Solutions of the first and second Painlevé equations are meromorphic, J. Anal. Math., 79, 345-77 (1999) · Zbl 0986.34074 · doi:10.1007/BF02788247
[12] Hinkkanen, A.; Laine, I., Solutions of a modified third Painlevé equation are meromorphic, J. Anal. Math., 85, 323-37 (2001) · Zbl 1015.34082 · doi:10.1007/BF02788086
[13] Hinkkanen, ALaine, I2001Solutions of a modified fifth Painlevé equation are meromorphicPapers on analysis8313346133-46Rep. Univ. Jyväskylä Dep. Math. Stat.Univ. Jyväskylä · Zbl 1017.34090
[14] Hinkkanen, A.; Laine, I., The meromorphic nature of the sixth Painlevé transcendents, J. Anal. Math., 94, 319-42 (2004) · Zbl 1115.34084 · doi:10.1007/BF02789052
[15] Inozemtsev, V. I.; Meshcheryakov, D. V., Extension of the class of integrable dynamical systems connected with semisimple Lie algebras, Lett. Math. Phys., 9, 13-18 (1985) · Zbl 0573.58016 · doi:10.1007/BF00398546
[16] Inozemtsev, V. I., Lax representation with spectral parameter on a torus for integrable particle systems, Lett. Math. Phys., 17, 11-17 (1989) · Zbl 0679.70005 · doi:10.1007/BF00420008
[17] Its, A. R.; Kapaev, A. A., Connection formulae for the fourth Painlevé transcendent; Clarkson-McLeod solution, J. Phys. A, 31, 4073-113 (1998) · Zbl 0898.34006 · doi:10.1088/0305-4470/31/17/015
[18] Iwasaki, K.; Okada, S., On an orbifold Hamiltonian structure for the first Painlevé equation, J. Math. Soc. Japan, 68, 961-74 (2016) · Zbl 1390.33040 · doi:10.2969/jmsj/06830961
[19] Joshi, N.; Radnović, M., Asymptotic behaviour of the fourth Painlevé transcendents in the space of initial values, Constr. Approx., 44, 195-231 (2016) · Zbl 1356.34093 · doi:10.1007/s00365-016-9329-3
[20] Kajiwara, K.; Noumi, M.; Yamada, Y., Geometric aspects of Painlevé equations, J. Phys. A, 50 (2017) · Zbl 1441.34095 · doi:10.1088/1751-8121/50/7/073001
[21] Kecker, T.; Filipuk, G., Regularising transformations for complex differential equations with movable algebraic singularities, Math. Phys. Anal. Geom., 25, 43 (2022) · Zbl 1501.34075 · doi:10.1007/s11040-022-09417-6
[22] Levin, A. M.; Olshanetsky, M. A., Painlevé-Calogero Correspondence Calogero-Moser-Sutherland Models (CRM Ser. Math. Phys.), pp 313-32 (2000), Springer
[23] Manin, Y. I., 6th Painlevé Equation, Universal Elliptic Curve and Mirror of \(####\) vol 2, Adv. Math. Sci., p 39 (1998), American Mathematical Society
[24] Matano, T.; Matumiya, A.; Takano, K., On some Hamiltonian structures of Painlevé systems. II, J. Math. Soc. Japan, 51, 843-66 (1999) · Zbl 0941.34076 · doi:10.2969/jmsj/05140843
[25] Matumiya, A., On some Hamiltonian structures of Painlevé systems III, Kumamoto J. Math., 10, 45-73 (1997) · Zbl 0887.34006
[26] Okamoto, K., Sur les feuilletages associés aux équations du second ordre à points critiques fixes de P. Painlevé(French) [On foliations associated with second-order Painlevé equations with fixed critical points], Japan. J. Math. (N.S.), 5, 1-79 (1979) · Zbl 0426.58017 · doi:10.4099/math1924.5.1
[27] Okamoto, K., Polynomial Hamiltonians associated with Painlevé equations, I, Proc. Japan Acad. A, 56, 264-8 (1980) · Zbl 0476.34010
[28] Okamoto, K.; Takano, K., The proof of the Painlevé property by Masao Hukuhara, Funkcial. Ekvac., 44, 201-17 (2001) · Zbl 1197.34175
[29] Painlevé, P., Sur les équations différentielles du second ordre à points critique fixés, C.R. Acad. Sci., Paris, 143, 1111-7 (1906) · JFM 37.0341.04
[30] Sakai, H., Rational surfaces associated with affine root systems and geometry of the Painlevé equations, Commun. Math. Phys., 220, 165-229 (2001) · doi:10.1007/s002200100446
[31] Sakai, H., pp 515-41 (2013)
[32] Shioda, T.; Takano, K., On some Hamiltonian structures of Painlevé systems. I, Funkcial. Ekvac., 40, 271-91 (1997) · Zbl 0891.34003
[33] Shimomura, S., Proofs of the Painlevé property for all Painlevé equations, Japan. J. Math. (N.S.), 29, 159-80 (2003) · Zbl 1085.34071 · doi:10.4099/math1924.29.159
[34] Steinmetz, N., On Painlevé’s equations I, II and IV, J. Anal. Math., 82, 363-77 (2000) · Zbl 0989.34073 · doi:10.1007/BF02791235
[35] Takano, K., Defining Manifolds for Painlevé Equations Toward the Exact WKB Analysis of Differential Equations, Linear or non-Linear, vol 204, pp 261-9 (1998), Kyoto University Press · Zbl 0992.34070
[36] Takasaki, K., Painlevé-Calogero correspondence analysis of Painlevé equations, Sūrikaisekikenkyūsho Kōkyūroku, pp 71-88 (2000), Kyoto University RIMS
[37] Takasaki, K., Painlevé-Calogero correspondence revisited, J. Math. Phys., 42, 1443-73 (2001) · Zbl 1016.34089 · doi:10.1063/1.1348025
[38] Wong, R.; Zhang, H. Y., On the connection formulas of the fourth Painlevé transcendent, Anal. Appl., 4, 419-48 (2009) · Zbl 1182.33034 · doi:10.1142/S021953050900144X
[39] Xia, J.; Xu, S-X; Zhao, Y-Q, Singular asymptotics for the Clarkson-McLeod solutions of the fourth Painlevé equation, Physica D, 434 (2022) · Zbl 1491.34100 · doi:10.1016/j.physd.2022.133254
[40] Xia, J.; Xu, S-X; Zhao, Y-Q, Clarkson-McLeod solutions of the fourth Painlevé equation and the parabolic cylinder-kernel determinant, J. Differ. Equ., 352, 249-307 (2023) · Zbl 1509.30027 · doi:10.1016/j.jde.2022.12.027
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.