×

Study on theoretical modeling and vibration performance of an assembled cylindrical shell-plate structure with whirl motion. (English) Zbl 1505.74086


MSC:

74H45 Vibrations in dynamical problems in solid mechanics
74K20 Plates
74K25 Shells
Full Text: DOI

References:

[1] Dai, Q.; Cao, Q., Parametric instability of rotating cylindrical shells subjected to periodic axial loads, Int. J. Mech. Sci., 146-147, 1-8 (2018)
[2] Chai, Q. D.; Wang, Y. Q., A general approach for free vibration analysis of spinning joined conical-cylindrical shells with arbitrary boundary conditions, Thin Walled Struct., 168, Article 108243 pp. (2021)
[3] Wang, Y. Q.; Ye, C.; Zu, J. W., Nonlinear vibration of metal foam cylindrical shells reinforced with graphene platelets, Aerosp. Sci. Technol., 85, 359-370 (2019)
[4] Dang, P. F.; Yang, Z. X.; Yan, Y. Y.; Han, Q. K.; Jin, Z. H., Nonlinear vibration characteristics of rotating composite blade considering the temperature-dependent graded material properties, Compos. Struct., 258, Article 113419 pp. (2021)
[5] Zhao, T. Y.; Ma, Y.; Zhang, H. Y.; Pan, H. G.; Cai, Y., Free vibration analysis of a rotating graphene nanoplatelet reinforced pre-twist blade-disk assembly with a setting angle, Appl Math Model, 93, 578-596 (2021) · Zbl 1481.74337
[6] Zhao, T. Y.; Cui, Y. S.; Pan, H. G.; Yuan, H. Q.; Yang, J., Free vibration analysis of a functionally graded graphene nanoplatelet reinforced disk-shaft assembly with whirl motion, Int. J. Mech. Sci., 197, Article 106335 pp. (2021)
[7] Ghasemi, A. R.; Meskini, M., Free vibration analysis of porous laminated rotating circular cylindrical shells, J. Vib. Control, 25, 2494-2508 (2019)
[8] Sun, S.; Liu, L., Multiple internal resonances in nonlinear vibrations of rotating thin-walled cylindrical shells, J. Sound Vib., 510, Article 116313 pp. (2021)
[9] Yang, S. W.; Hao, Y. X.; Zhang, W.; Yang, L.; Liu, L. T., Free vibration and buckling of eccentric rotating FG-GPLRC cylindrical shell using first-order shear deformation theory, Compos. Struct., 263, Article 113728 pp. (2021)
[10] Li, C.; Li, P.; Zhong, B.; Miao, X., Large-amplitude vibrations of thin-walled rotating laminated composite cylindrical shell with arbitrary boundary conditions, Thin Walled Struct., 156, Article 106966 pp. (2020)
[11] Mohammadimehr, M.; Rostami, R., Bending and vibration analyses of a rotating sandwich cylindrical shell considering nanocomposite core and piezoelectric layers subjected to thermal and magnetic fields, Appl. Math. Mech.-Engl. Ed, 39, 219-240 (2018) · Zbl 1382.74085
[12] Qin, Z.; Yang, Z.; Zu, J.; Chu, F., Free vibration analysis of rotating cylindrical shells coupled with moderately thick annular plates, Int. J. Mech. Sci., 142-143, 127-139 (2018)
[13] SafarPour, H.; Ghanbari, B.; Ghadiri, M., Buckling and free vibration analysis of high speed rotating carbon nanotube reinforced cylindrical piezoelectric shell, Appl Math Model, 65, 428-442 (2019) · Zbl 1481.74219
[14] Song, X.; Ren, Y.; Han, Q., Nonlinear vibration of rotating cylindrical shell due to unilateral contact induced tip rubbing impact: theoretical and experimental verification, Mech Syst Signal Process, 164, Article 108244 pp. (2022)
[15] Rostami, H.; Bakhtiari-Nejad, F.; Ranji, A. R., Vibration of the rotating rectangular orthotropic Mindlin plates with an arbitrary stagger angle, J. Vib. Control, 25, 1194-1209 (2019)
[16] Zhang, Y. F.; Niu, Y.; Zhang, W., Nonlinear vibrations and internal resonance of pretwisted rotating cantilever rectangular plate with varying cross-section and aerodynamic force, Eng. Struct., 225, Article 111259 pp. (2020)
[17] Arumugam, A. B.; Ramamoorthy, M.; Rajamohan, V.; S, M.; S, R. K., Dynamic characterization and parametric instability analysis of rotating magnetorheological fluid composite sandwich plate subjected to periodic in-plane loading, Journal of Sandwich Structures & Materials, 21, 2099-2126 (2019)
[18] Jiang, F.; Li, L.; Liao, W.-. H.; Zhang, D., Vibration control of a rotating hub-plate with enhanced active constrained layer damping treatment, Aerosp. Sci. Technol., 118, Article 107081 pp. (2021)
[19] Kou, H.; Du, J.; Liang, M.; Zhu, L.; Zeng, L.; Zhu, Z.; Zhang, F., Nonlinear characteristics of contact-induced vibrations of the rotating variable thickness plate under large deformations, Eur. J. Mech. A. Solids, 77, Article 103801 pp. (2019) · Zbl 1479.74050
[20] Li, L.; Liao, W.-. H.; Zhang, D.; Guo, Y., Vibration analysis of a free moving thin plate with fully covered active constrained layer damping treatment, Compos. Struct., 235, Article 111742 pp. (2020)
[21] Cheng, H.; Li, C.; Jiang, Y., Free vibration analysis of rotating pre-twisted ceramic matrix carbon nanotubes reinforced blades, Mech. Adv. Mater. Struct., 1-75 (2020)
[22] Zhang, Y. F.; Niu, Y.; Zhang, W., Nonlinear vibrations and internal resonance of pretwisted rotating cantilever rectangular plate with varying cross-section and aerodynamic force, Eng. Struct., 225, Article 111259 pp. (2020)
[23] Li, X.; Li, Y. H.; Xie, T. F., Vibration characteristics of a rotating composite laminated cylindrical shell in subsonic air flow and hygrothermal environment, Int. J. Mech. Sci., 150, 356-368 (2019)
[24] Zhao, T. Y.; Yang, Y. F.; Pan, H. G.; Zhang, H. Y.; Yuan, H. Q., Free vibration analysis of a spinning porous nanocomposite blade reinforced with graphene nanoplatelets, The Journal of Strain Analysis for Engineering Design, 56, 574-586 (2021)
[25] Liu, T.; Zhang, W.; Mao, J. J.; Zheng, Y., Nonlinear breathing vibrations of eccentric rotating composite laminated circular cylindrical shell subjected to temperature, rotating speed and external excitations, Mech Syst Signal Process, 127, 463-498 (2019)
[26] Teng, M. W.; Wang, Y. Q., Nonlinear forced vibration of simply supported functionally graded porous nanocomposite thin plates reinforced with graphene platelets, Thin Walled Struct., 164, Article 107799 pp. (2021)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.