×

Buckling and free vibration analysis of high speed rotating carbon nanotube reinforced cylindrical piezoelectric shell. (English) Zbl 1481.74219

Summary: In this paper, buckling and free vibration behavior of a piezoelectric rotating cylindrical carbon nanotube-reinforced (CNTRC) shell is investigated. Both cases of uniform distribution (UD) and FG distribution patterns of reinforcements are studied. The accuracy of the presented model is verified with previous studies and also with those obtained by Navier analytical method. The novelty of this study is investigating the effects of critical voltage and CNT reinforcement as well as satisfying various boundary conditions implemented on the piezoelectric rotating cylindrical CNTRC shell. The governing equations and boundary conditions have been developed using Hamilton’s principle and are solved with the aid of Navier and generalized differential quadrature (GDQ) methods. In this research, the buckling phenomena in the piezoelectric rotating cylindrical CNTRC shell occur as the natural frequency is equal to zero. The results show that, various types of CNT reinforcement, length to radius ratio, external voltage, angular velocity, initial hoop tension and boundary conditions play important roles on critical voltage and natural frequency of piezoelectric rotating cylindrical CNTRC shell.

MSC:

74G60 Bifurcation and buckling
74H45 Vibrations in dynamical problems in solid mechanics
74K20 Plates
Full Text: DOI

References:

[1] Love, A. E.H., A Treatise on the Mathematical Theory of Elasticity (2013), Cambridge university press · Zbl 1258.74003
[2] Donnell, L. H., A new theory for the buckling of thin cylinders under axial compression and bending, Trans. ASME, 56, 795-806 (1934)
[3] Sanders, J., An Improved First Approximation Theory for Thin Shells (NASA TR-R24) (1959), US Government Printing Office: US Government Printing Office Washington, DC
[4] Leissa, A., Vibration of Shells (1973), (NASA SP-288) US Government Printing Office: (NASA SP-288) US Government Printing Office Washington, DC · Zbl 0268.73033
[5] Reddy, J. N., Mechanics of Laminated Composite Plates and shells: Theory and Analysis (2004), CRC Press · Zbl 1075.74001
[6] Amabili, M., Nonlinear Vibrations and Stability of Shells and Plates (2008), Cambridge University Press · Zbl 1154.74002
[7] Reissner, E., The effect of transverse shear deformation on the bending of elastic plates, ASME J. Appl. Mech., 12, A68-A77 (1945) · Zbl 0063.06470
[8] Mindlin, R. D., Influence of rotary inertia and shear on flexural motions of isotropic elastic plates, J. Appl. Mech., 18, 1, 31-38 (1951) · Zbl 0044.40101
[9] Sheng, G.; Wang, X., Thermoelastic vibration and buckling analysis of functionally graded piezoelectric cylindrical shells, Appl. Math. Model., 34, 2630-2643 (2010) · Zbl 1195.74034
[10] Mohammadimehr, M.; Moradi, M.; Loghman, A., Influence of the elastic foundation on the free vibration and buckling of thin-walled piezoelectric-based FGM cylindrical shells under combined loadings, J. Solid Mech., 6, 347-365 (2014)
[11] Ke, L.; Wang, Y.; Reddy, J., Thermo-electro-mechanical vibration of size-dependent piezoelectric cylindrical nanoshells under various boundary conditions, Comp. Struct., 116, 626-636 (2014)
[12] Bryan, G. H., On the beats in the vibrations of a revolving cylinder or bell, (Proceedings of the Cambridge Philosophical Society (1890)), 101-111
[13] DiTaranto, R.; Lessen, M., Coriolis acceleration effect on the vibration of a rotating thin-walled circular cylinder, J. Appl. Mech., 31, 700-701 (1964)
[14] Srinivasan, A.; Lauterbach, G. F., Traveling waves in rotating cylindrical shells, J. Eng. Ind., 93, 1229-1232 (1971)
[15] Zohar, A.; Aboudi, J., The free vibrations of a thin circular finite rotating cylinder, Int. J. Mech. Sci., 15, 269-278 (1973) · Zbl 0253.73069
[16] Padovan, J., Natural frequencies of rotating prestressed cylinders, J. Sound Vibr., 31, 469-482 (1973)
[17] Padovan, J., Traveling waves vibrations and buckling of rotating anisotropic shells of revolution by finite elements, Int. J. Solids Struct., 11, 1367-1380 (1975) · Zbl 0323.73065
[18] Padovan, J., Numerical analysis of asymmetric frequency and buckling eigenvalues of prestressed rotating anisotropic shells of revolution, Comput. Struct., 5, 145-154 (1975) · Zbl 0323.73066
[19] Endo, M.; Hatamura, K.; Sakata, M.; Taniguchi, O., Flexural vibration of a thin rotating ring, J. Sound Vibr., 92, 261-272 (1984)
[20] Saito, T.; Endo, M., Vibration of finite length, rotating cylindrical shells, J. Sound Vibr., 107, 17-28 (1986) · Zbl 1235.74111
[21] Huang, S.; Soedel, W., Effects of Coriolis acceleration on the forced vibration of rotating cylindrical shells, J. Appl. Mech., 55, 231-233 (1988)
[22] Huang, S.; Hsu, B., Resonant phenomena of a rotating cylindrical shell subjected to a harmonic moving load, J. Sound Vibr., 136, 215-228 (1990)
[23] Rand, O.; Stavsky, Y., Free vibrations of spinning composite cylindrical shells, Int. J. Solids Struct., 28, 831-843 (1991)
[24] Chen, Y.; Zhao, H.; Shen, Z.; Grieger, I.; Kröplin, B.-H., Vibrations of high speed rotating shells with calculations for cylindrical shells, J. Sound Vibr., 160, 137-160 (1993) · Zbl 0939.74552
[25] Ganesan, N., Effect of rotation on vibration of moderately thick circular cylindrical shells, J. Vibr. Acoust., 116, 199 (1994)
[26] Lam, K.; Loy, C., On vibrations of thin rotating laminated composite cylindrical shells, Comp. Eng., 4, 1153-1167 (1994)
[27] Lam, K.; Loy, C., Analysis of rotating laminated cylindrical shells by different thin shell theories, J. Sound Vibr., 186, 23-35 (1995) · Zbl 0982.74511
[28] Lam, K.; Hua, L., Vibration analysis of a rotating truncated circular conical shell, Int. J. Solids Struct., 34, 2183-2197 (1997) · Zbl 0944.74560
[29] Hua, L.; Lam, K., Orthotropic influence on frequency characteristics of a rotating composite laminated conical shell by the generalized differential quadrature method, Int. J. Solids Struct., 38, 3995-4015 (2001) · Zbl 0969.74619
[30] Hua, L.; Lam, K., Frequency characteristics of a thin rotating cylindrical shell using the generalized differential quadrature method, Int. J. Mech. Sci., 40, 443-459 (1998) · Zbl 0899.73270
[31] Loveday, P.; Rogers, C., Free vibration of elastically supported thin cylinders including gyroscopic effects, 1998, J. Sound Vib., 217, 3, 547-562 (1998)
[32] Lee, Y.-S.; Kim, Y.-W., Vibration analysis of rotating composite cylindrical shells with orthogonal stiffeners, Comput. Struct., 69, 271-281 (1998) · Zbl 0967.74529
[33] Zhao, X.; Liew, K.; Ng, T., Vibrations of rotating cross-ply laminated circular cylindrical shells with stringer and ring stiffeners, Int. J. Solids Struct., 39, 529-545 (2002) · Zbl 1045.74028
[34] Liew, K.; Ng, T.; Zhao, X., Vibration of axially loaded rotating cross-ply laminated cylindrical shells via Ritz method, J. Eng. Mech., 128, 1001-1007 (2002)
[35] Liew, K.; Ng, T.; Zhao, X.; Reddy, J., Harmonic reproducing kernel particle method for free vibration analysis of rotating cylindrical shells, Comput. Methods Appl. Mech. Eng., 191, 4141-4157 (2002) · Zbl 1083.74609
[36] Li, H.; Lam, K.-Y.; Ng, T.-Y., Rotating Shell Dynamics, 50 (2005), Elsevier · Zbl 1175.74001
[37] Civalek, O., Linear vibration analysis of isotropic conical shells by discrete singular convolution (DSC), Struct. Eng. Mech., 25, 127 (2007)
[38] Civalek, Ö., A parametric study of the free vibration analysis of rotating laminated cylindrical shells using the method of discrete singular convolution, Thin-Walled Struct., 45, 692-698 (2007)
[39] Civalek, Ö.; Gürses, M., Free vibration analysis of rotating cylindrical shells using discrete singular convolution technique, Int. J. Pressure Vessels Piping, 86, 677-683 (2009)
[40] Guo, D.; Zheng, Z.; Chu, F., Vibration analysis of spinning cylindrical shells by finite element method, Int. J. Solids Struct., 39, 725-739 (2002) · Zbl 0991.74512
[41] Zhang, X., Parametric analysis of frequency of rotating laminated composite cylindrical shells with the wave propagation approach, Comput. Methods Appl. Mech. Eng., 191, 2057-2071 (2002) · Zbl 1131.74312
[42] Wang, Y.; Guo, X.; Chang, H.; Li, H., Nonlinear dynamic response of rotating circular cylindrical shells with precession of vibrating shape—part I: numerical solution, Int. J. Mech. Sci., 52, 1217-1224 (2010)
[43] Sun, S.; Cao, D.; Han, Q., Vibration studies of rotating cylindrical shells with arbitrary edges using characteristic orthogonal polynomials in the Rayleigh-Ritz method, Int. J. Mech. Sci., 68, 180-189 (2013)
[44] Shojaeefard, M.; Mahinzare, M.; Safarpour, H.; Googarchin, H. S.; Ghadiri, M., Free vibration of an ultra-fast-rotating-induced cylindrical nano-shell resting on a Winkler foundation under thermo-electro-magneto-elastic condition, Appl. Math. Model., 61, 255-279 (2018) · Zbl 1460.74042
[45] Kim, B. C.; Park, S. W., Fracture toughness of the nano-particle reinforced epoxy composite, Comp. Struct., 86, 69-77 (2008)
[46] Li, Q. H.; Zhang, J. H., Effects of nano fillers on the conductivity, adhesion strength and reliability of isotropic conductive adhesives (ICAs), Key Eng. Mater., 355, 2879-2882 (2007)
[47] Salehi-Khojin, A.; Jana, S.; Zhong, W.-H., Thermal-mechanical properties of a graphitic-nanofibers reinforced epoxy, J. Nanosc. Nanotechnol., 7, 898-906 (2007)
[48] Zhai, L.; Ling, G.; Wang, Y., Effect of nano-Al 2 O 3 on adhesion strength of epoxy adhesive and steel, Int. J. Adhesion Adhesives, 28, 23-28 (2008)
[49] Huang, C.-K., Prediction model of thermal conductivity for composite materials with nano particles, (Proceedings of the NSTI Nanotechnology Conference and Trade Show-NSTI Nanotech 2007 (2007)), 320-323
[50] Rafiee, R.; Moghadam, R. M., Simulation of impact and post-impact behavior of carbon nanotube reinforced polymer using multi-scale finite element modeling, Comput. Mater. Sci., 63, 261-268 (2012)
[51] Kostopoulos, V.; Baltopoulos, A.; Karapappas, P.; Vavouliotis, A.; Paipetis, A., Impact and after-impact properties of carbon fibre reinforced composites enhanced with multi-wall carbon nanotubes, Comp. Sci. Technol., 70, 553-563 (2010)
[52] Vafamehr, A.; Khodayar, M. E.; Manshadi, S. D.; Ahmad, I.; Lin, J., A Framework for Expansion Planning of Data Centers in Electricity and Data Networks under Uncertainty, IEEE Trans. Smart Grid (2018), in print
[53] Vafamehr, A.; Khodayar, M. E.; Abdelghany, K., Oligopolistic competition among cloud providers in electricity and data networks, IEEE Trans. Smart Grid (2018), in print
[54] Vafamehr, A.; Khodayar, M. E., Energy-aware cloud computing, Electric. J., 31, 40-49 (2018)
[55] Sun, C.; Li, F.; Cheng, H.; Lu, G., Axial Young’s modulus prediction of single-walled carbon nanotube arrays with diameters from nanometer to meter scales, Appl. Phys. Lett., 87, Article 193101 pp. (2005)
[56] Lau, A. K.-T.; Hui, D., The revolutionary creation of new advanced materials-carbon nanotube composites, Comp. Part B Eng., 33, 263-277 (2002)
[57] Lau, K.-T.; Gu, C.; Gao, G.-H.; Ling, H.-y.; Reid, S. R., Stretching process of single-and multi-walled carbon nanotubes for nanocomposite applications, Carbon, 42, 426-428 (2004)
[58] Esawi, A. M.; Farag, M. M., Carbon nanotube reinforced composites: potential and current challenges, Mater. Design, 28, 2394-2401 (2007)
[59] Li, C.; Thostenson, E. T.; Chou, T.-W., Sensors and actuators based on carbon nanotubes and their composites: a review, Comp. Sci. Technol., 68, 1227-1249 (2008)
[60] Chou, T.-W.; Gao, L.; Thostenson, E. T.; Zhang, Z.; Byun, J.-H., An assessment of the science and technology of carbon nanotube-based fibers and composites, Comp. Sci. Technol., 70, 1-19 (2010)
[61] Griebel, M.; Hamaekers, J., Molecular dynamics simulations of the elastic moduli of polymer-carbon nanotube composites, Comput. Methods Appl. Mech. Eng., 193, 1773-1788 (2004) · Zbl 1079.74665
[62] Song, Y. S.; Youn, J. R., Modeling of effective elastic properties for polymer based carbon nanotube composites, Polymer, 47, 1741-1748 (2006)
[63] Han, Y.; Elliott, J., Molecular dynamics simulations of the elastic properties of polymer/carbon nanotube composites, Comput. Mater. Sci., 39, 315-323 (2007)
[64] Safarpour, H.; Mohammadi, K.; Ghadiri, M.; Barooti, M. M., Effect of porosity on flexural vibration of CNT-reinforced cylindrical shells in thermal environment using GDQM, Int. J. Struct. Stabil. Dyn., Article 1850123 pp. (2018) · Zbl 1535.74054
[65] Shen, H.-S., Nonlinear bending of functionally graded carbon nanotube-reinforced composite plates in thermal environments, Comp. Struct., 91, 9-19 (2009)
[66] Yas, M.; Samadi, N., Free vibrations and buckling analysis of carbon nanotube-reinforced composite Timoshenko beams on elastic foundation, Int. J. Pressure Vessels Piping, 98, 119-128 (2012)
[67] Moradi-Dastjerdi, R.; Foroutan, M.; Pourasghar, A., Dynamic analysis of functionally graded nanocomposite cylinders reinforced by carbon nanotube by a mesh-free method, Mater. Design, 44, 256-266 (2013)
[68] Shen, H.-S.; Xiang, Y., Nonlinear vibration of nanotube-reinforced composite cylindrical shells in thermal environments, Comput. Methods Appl. Mech. Eng., 213, 196-205 (2012) · Zbl 1243.74059
[69] Aragh, B. S.; Farahani, E. B.; Barati, A. N., Natural frequency analysis of continuously graded carbon nanotube-reinforced cylindrical shells based on third-order shear deformation theory, Math. Mech. Solids, 18, 264-284 (2013) · Zbl 07280045
[70] Kundalwal, S.; Kumar, R. S.; Ray, M., Smart damping of laminated fuzzy fiber reinforced composite shells using 1-3 piezoelectric composites, Smart Mater. Struct., 22, Article 105001 pp. (2013)
[71] Kundalwal, S.; Meguid, S., Effect of carbon nanotube waviness on active damping of laminated hybrid composite shells, Acta Mech., 226, 2035-2052 (2015) · Zbl 1325.74097
[72] Kundalwal, S. I.; Ray, M. C., Smart damping of fuzzy fiber reinforced composite plates using 1-3 piezoelectric composites, J. Vibr. Control, 22, 1526-1546 (2016)
[73] Kumar, R. S.; Kundalwal, S.; Ray, M., Control of large amplitude vibrations of doubly curved sandwich shells composed of fuzzy fiber reinforced composite facings, Aerosp. Sci. Technol., 70, 10-28 (2017)
[74] Kundalwal, S. I., Review on micromechanics of nano‐and micro‐fiber reinforced composites, Polymer Compos. (2017)
[75] Rabani Bidgoli, M.; Saeed Karimi, M.; Ghorbanpour Arani, A., Nonlinear vibration and instability analysis of functionally graded CNT-reinforced cylindrical shells conveying viscous fluid resting on orthotropic Pasternak medium, Mech. Adv. Mater. Struct., 23, 819-831 (2016)
[76] Eringen, A. C., Nonlocal Continuum Field Theories (2002), Springer Science & Business Media · Zbl 1023.74003
[77] Ke, L.-L.; Wang, Y.-S.; Yang, J.; Kitipornchai, S., The size-dependent vibration of embedded magneto-electro-elastic cylindrical nanoshells, Smart Mater. Struct., 23, Article 125036 pp. (2014)
[78] Wang, Q., On buckling of column structures with a pair of piezoelectric layers, Eng. Struct., 24, 199-205 (2002)
[79] Hosseini-Hashemi, S.; Ilkhani, M.; Fadaee, M., Accurate natural frequencies and critical speeds of a rotating functionally graded moderately thick cylindrical shell, Int. J. Mech. Sci., 76, 9-20 (2013)
[80] Ghadiri, M.; Shafiei, N.; Safarpour, H., Influence of surface effects on vibration behavior of a rotary functionally graded nanobeam based on Eringen’s nonlocal elasticity, Microsyst. Technol., 1-21 (2016)
[81] Barooti, M. M.; Safarpour, H.; Ghadiri, M., Critical speed and free vibration analysis of spinning 3D single-walled carbon nanotubes resting on elastic foundations, Eur. Phys. J. Plus, 132, 6 (2017)
[82] SafarPour, H.; Ghadiri, M., Critical rotational speed, critical velocity of fluid flow and free vibration analysis of a spinning SWCNT conveying viscous fluid, Microfluid. Nanofluidics, 21, 22 (2017)
[83] Shu, C., Differential Quadrature and its Application in Engineering (2012), Springer Science & Business Media
[84] Van den Boomgaard, J.; Terrell, D.; Born, R.; Giller, H., An in situ grown eutectic magnetoelectric composite material, J. Mater. Sci., 9, 1705-1709 (1974)
[85] Heydarpour, Y.; Aghdam, M.; Malekzadeh, P., Free vibration analysis of rotating functionally graded carbon nanotube-reinforced composite truncated conical shells, Comp. Struct., 117, 187-200 (2014) · Zbl 1383.74034
[86] Loy, C.; Lam, K.; Shu, C., Analysis of cylindrical shells using generalized differential quadrature, Shock Vibr., 4, 193-198 (1997)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.