×

Existence of a weak solution to a nonlinear fluid-structure interaction problem with heat exchange. (English) Zbl 1504.35358

Summary: In this paper, we study a nonlinear interaction problem between a thermoelastic shell and a heat-conducting fluid. The shell is governed by linear thermoelasticity equations and encompasses a time-dependent domain which is filled with a fluid governed by the full Navier-Stokes-Fourier system. The fluid and the shell are fully coupled, giving rise to a novel nonlinear moving boundary fluid-structure interaction problem involving heat exchange. The existence of a weak solution is obtained by combining three approximation techniques – decoupling, penalization and domain extension. In particular, the penalization and the domain extension allow us to use the methods already developed for compressible fluids on moving domains. In such a way, the proof is more elegant and the analysis is drastically simplified. Let us stress that this is the first time the heat exchange in the context of fluid-structure interaction problems is considered.

MSC:

35Q35 PDEs in connection with fluid mechanics
35Q74 PDEs in connection with mechanics of deformable solids
76A10 Viscoelastic fluids
76N10 Existence, uniqueness, and regularity theory for compressible fluids and gas dynamics
74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
74K25 Shells
74B20 Nonlinear elasticity
74A15 Thermodynamics in solid mechanics
35D30 Weak solutions to PDEs

References:

[1] Leray, J., Sur le mouvement d’un liquide visqueux emplissant l’espace, Acta. Math, 63, 193-248 (1934) · JFM 60.0726.05 · doi:10.1007/BF02547354
[2] Lions, P.-L., Mathematical Topics in Fluid Mechanics. Vol. 2, Volume 10 of Oxford Lecture Series in Mathematics and Its Applications (1998), New York: The Clarendon Press, Oxford University Press, Compressible models, Oxford Science Publications, New York · Zbl 0908.76004
[3] Feireisl, E.; Novotný, A.; Petzeltová, H., On the existence of globally defined weak solutions to the Navier-Stokes equations, J. Math. Fluid Mech, 3, 4, 358-392 (2001) · Zbl 0997.35043
[4] Gruber, C.; Pache, S.; Lesne, A., Two-time-scale relaxation towards thermal equilibrium of the enigmatic piston, J. Stat. Phys., 112, 5-6, 1177-1206 (2003) · Zbl 1032.82024 · doi:10.1023/A:1024671710343
[5] Shelukhin, V. V., On the structure of generalized solutions of the one-dimensional equations of a polytropic viscous gas, Prikl. Mat. Mekh, 48, 6, 912-920 (1984) · Zbl 0591.76128
[6] Wright, P., The periodic oscillation of an adiabatic piston in two or three dimensions, Commun. Math. Phys, 275, 2, 553-580 (2007) · Zbl 1135.82031 · doi:10.1007/s00220-007-0317-0
[7] Feireisl, E., Dynamics of Viscous Compressible Fluids, Volume 26 of Oxford Lecture Series in Mathematics and Its Applications (2004), Oxford: Oxford University Press, Oxford · Zbl 1080.76001
[8] Feireisl, E., On the motion of a viscous, compressible, and heat conducting fluid, Indiana Univ. Math. J, 53, 6, 1707-1738 (2004) · Zbl 1087.35078 · doi:10.1512/iumj.2004.53.2510
[9] Feireisl, E., Handbook of Mathematical Analysis in Mechanics of Viscous Fluids, Concepts of solutions in the thermodynamics of compressible fluids, 1353-1379 (2018), Springer: Springer, Cham
[10] Feireisl, E.; Novotný, A., Singular Limits in Thermodynamics of Viscous Fluids (2017), Cham: Birkhäuser/Springer, Cham · Zbl 1432.76002
[11] Feireisl, E.; Sun, Y., Recent Advances in Partial Differential Equations and Applications, Volume 666 of Contemp. Math., Conditional regularity of very weak solutions to the Navier-Stokes-Fourier system, 179-199 (2016), American Mathematical Society: American Mathematical Society, Providence, RI · Zbl 1349.35269
[12] Matsumura, A.; Nishida, T., Initial-boundary value problems for the equations of motion of compressible viscous and heat-conductive fluids, Commun. Math. Phys, 89, 4, 445-464 (1983) · Zbl 0543.76099 · doi:10.1007/BF01214738
[13] Novotný, A., Topics on Compressible Navier-Stokes Equations, Volume 50 of Panor. Synthèses, Lecture notes on the Navier-Stokes-Fourier system: weak solutions, relative entropy inequality, weak strong uniqueness, 1-42 (2016), Paris: Société mathématique de France, Paris · Zbl 1369.35066
[14] Valli, A.; Zajaczkowski, W. M., Navier-Stokes equations for compressible fluids: global existence and qualitative properties of the solutions in the general case, Commun.Math. Phys, 103, 2, 259-296 (1986) · Zbl 0611.76082 · doi:10.1007/BF01206939
[15] Bodnár, Tomáš; Galdi, Giovanni P.; Nečasová, Šárka, Fluid-Structure Interaction and Biomedical Applications. Advances in Mathematical Fluid Mechanics (2014), Basel: Birkhäuser/Springer, Basel · Zbl 1300.76003
[16] Kaltenbacher, B.; Kukavica, I.; Lasiecka, I.; Triggiani, R.; Tuffaha, A.; Webster, J. T., Mathematical Theory of Evolutionary Fluid-Flow Structure Interactions, Volume 48 of Oberwolfach Seminars (2016), Cham: Birkhäuser/Springer, Cham
[17] Chambolle, A.; Desjardins, B.; Esteban, M. J.; Grandmont, C., Existence of weak solutions for the unsteady interaction of a viscous fluid with an elastic plate, J. Math. Fluid Mech, 7, 3, 368-404 (2005) · Zbl 1080.74024 · doi:10.1007/s00021-004-0121-y
[18] Grandmont, C., Existence of weak solutions for the unsteady interaction of a viscous fluid with an elastic plate, SIAM J. Math. Anal, 40, 2, 716-737 (2008) · Zbl 1158.74016 · doi:10.1137/070699196
[19] Lengeler, D.; Růžička, M., Weak solutions for an incompressible Newtonian fluid interacting with a Koiter type shell, Arch. Rational Mech. Anal, 211, 1, 205-255 (2014) · Zbl 1293.35211 · doi:10.1007/s00205-013-0686-9
[20] Muha, B., Schwarzacher, S. (2019). Existence and regularity of weak solutions for a fluid interacting with a non-linear shell in 3d. arXiv preprint arXiv:1906.01962
[21] Muha, B.; Čanić, S., Existence of a weak solution to a nonlinear fluid-structure interaction problem modeling the flow of an incompressible, viscous fluid in a cylinder with deformable walls, Arch. Rational Mech. Anal, 207, 3, 919-968 (2013) · Zbl 1260.35148 · doi:10.1007/s00205-012-0585-5
[22] Trifunović, S.; Wang, Y.-G., Existence of a weak solution to the fluid-structure interaction problem in 3D, J. Diff. Equ, 268, 4, 1495-1531 (2020) · Zbl 1431.35111 · doi:10.1016/j.jde.2019.09.002
[23] Benešová, B., Kampschulte, M., Schwarzacher, S. (2020). A variational approach to hyperbolic evolutions and fluid-structure interactionsarXiv preprint arXiv:2008.04796.
[24] Muha, B.; Čanić, S., Existence of a solution to a fluid-multi-layered-structure interaction problem, J. Diff. Equ, 256, 2, 658-706 (2014) · Zbl 1326.35282 · doi:10.1016/j.jde.2013.09.016
[25] Coutand, D.; Shkoller, S., Motion of an elastic solid inside an incompressible viscous fluid, Arch. Rational Mech. Anal, 176, 1, 25-102 (2005) · Zbl 1064.74057 · doi:10.1007/s00205-004-0340-7
[26] Grandmont, C.; Hillairet, M.; Lequeurre, J., Existence of local strong solutions to fluid-beam and fluid-rod interaction systems, Ann. Inst. H. Poincaré Anal. Non Linéaire, 36, 4, 1105-1149 (2019) · Zbl 1428.35291 · doi:10.1016/j.anihpc.2018.10.006
[27] Ignatova, M.; Kukavica, I.; Lasiecka, I.; Tuffaha, A., On well-posedness and small data global existence for an interface damped free boundary fluid-structure model, Nonlinearity, 27, 3, 467-499 (2014) · Zbl 1286.35272 · doi:10.1088/0951-7715/27/3/467
[28] Maity, D.; Raymond, J.-P.; Roy, A., Maximal-in-time existence and uniqueness of strong solution of a 3D fluid-structure interaction model, SIAM J. Math. Anal, 52, 6, 6338-6378 (2020) · Zbl 1456.35165 · doi:10.1137/18M1178451
[29] Raymond, J.-P.; Vanninathan, M., A fluid-structure model coupling the Navier-Stokes equations and the Lamé system, J. Math. Pures Appl. (9), 102, 3, 546-596 (2014) · Zbl 1303.35060 · doi:10.1016/j.matpur.2013.12.004
[30] Grandmont, C.; Hillairet, M., Existence of global strong solutions to a beam-fluid interaction system, Arch. Rational Mech. Anal, 220, 3, 1283-1333 (2016) · Zbl 1334.35232 · doi:10.1007/s00205-015-0954-y
[31] Boulakia, M.; Guerrero, S., On the interaction problem between a compressible fluid and a Saint-Venant Kirchhoff elastic structure, Adv. Diff. Equ., 22, 1-2, 1-48 (2017) · Zbl 1357.74017
[32] Kukavica, I.; Tuffaha, A., Well-posedness for the compressible Navier-Stokes-Lamé system with a free interface, Nonlinearity, 25, 11, 3111-3137 (2012) · Zbl 1256.35213 · doi:10.1088/0951-7715/25/11/3111
[33] Mitra, S., Local existence of strong solutions of a fluid-structure interaction model, J. Math. Fluid Mech, 22, 4, 38-60 (2020) · Zbl 1452.35154 · doi:10.1007/s00021-020-00520-8
[34] Maity, D.; Roy, A.; Takahashi, T., Existence of strong solutions for a system of interaction between a compressible viscous fluid and a wave equation, Nonlinearity, 34, 4, 2659-2687 (2021) · Zbl 1464.35188 · doi:10.1088/1361-6544/abe696
[35] Breit, D.; Schwarzacher, S., Compressible fluids interacting with a linear-elastic shell, Arch. Rational Mech. Anal, 228, 2, 495-562 (2018) · Zbl 1454.76065 · doi:10.1007/s00205-017-1199-8
[36] Trifunović, S., Wang, Y.-G. (2020). On the interaction problem between a compressible viscous fluid and a nonlinear thermoelastic platearXiv preprint arXiv:2010.01639
[37] Breit, D., Kampschulte, M., Schwarzacher, S. (2021). Compressible fluids interacting with 3d visco-elastic bulk solidsarXiv preprint arXiv:2108.03042
[38] Maity, D.; Takahashi, T., Existence and uniqueness of strong solutions for the system of interaction between a compressible Navier-Stokes-Fourier fluid and a damped plate equation, Nonlinear Anal. Real World Appl, 59, 103267-103234 (2021) · Zbl 1465.74051 · doi:10.1016/j.nonrwa.2020.103267
[39] Breit, D., Schwarzacher, S. (2021). Navier-Stokes-Fourier fluids interacting with elastic shellsarXiv preprint arXiv:2101.00824
[40] Lee, J. M., Introduction to Smooth Manifolds, Volume 218 of Graduate Texts in Mathematics (2003), New York: Springer-Verlag, New York
[41] Casanova, J.-J.; Grandmont, C.; Hillairet, M., On an existence theory for a fluid-beam problem encompassing possible contacts, J. Éc. Polytech. Math, 8, 933-971 (2021) · Zbl 1465.76027 · doi:10.5802/jep.162
[42] Gérard-Varet, D.; Hillairet, M., Regularity issues in the problem of fluid structure interaction, Arch. Rational Mech. Anal, 195, 2, 375-407 (2010) · Zbl 1192.35131 · doi:10.1007/s00205-008-0202-9
[43] Gérard-Varet, D.; Hillairet, M.; Wang, C., The influence of boundary conditions on the contact problem in a 3D Navier-Stokes flow, J. Math. Pures Appl. (9), 103, 1, 1-38 (2015) · Zbl 1307.35221 · doi:10.1016/j.matpur.2014.03.005
[44] Gravina, G., Schwarzacher, S., Souček, O., Tůma, K. (2020). Contactless rebound of elastic bodies in a viscous incompressible fluidarXiv preprint arXiv:2011.01932 · Zbl 1512.76026
[45] Hillairet, M., Lack of collision between solid bodies in a 2D incompressible viscous flow, Comm. Partial Diff. Equ, 32, 9, 1345-1371 (2007) · Zbl 1221.35279 · doi:10.1080/03605300601088740
[46] Hillairet, M.; Takahashi, T., Collisions in three-dimensional fluid structure interaction problems, SIAM J. Math. Anal, 40, 6, 2451-2477 (2009) · Zbl 1178.35291 · doi:10.1137/080716074
[47] Wahl, H. v.; Richter, T.; Frei, S.; Hagemeier, T., Falling balls in a viscous fluid with contact: Comparing numerical simulations with experimental data, Phys. Fluids, 33, 3, 033304 (2021) · doi:10.1063/5.0037971
[48] Galić, M.; Muha, B.; Čanić, S., Analysis of a 3D nonlinear, moving boundary problem describing fluid-mesh-shell interaction, Trans. Amer. Math. Soc, 373, 9, 6621-6681 (2020) · Zbl 1448.74031 · doi:10.1090/tran/8125
[49] Muha, B.; Čanić, S., Existence of a weak solution to a fluid-elastic structure interaction problem with the Navier slip boundary condition, J. Diff. Equ, 260, 12, 8550-8589 (2016) · Zbl 1341.35103 · doi:10.1016/j.jde.2016.02.029
[50] Lagnese, J. E., Boundary Stabilization of Thin Plates (1989), Philadelphia (SIAM): SIAM Studies in Applied Mathematics · Zbl 0696.73034
[51] Feireisl, E.; Kreml, O.; Nečasová, Š.; Neustupa, J.; Stebel, J., Weak solutions to the barotropic Navier-Stokes system with slip boundary conditions in time dependent domains, J. Diff. Equ, 254, 1, 125-140 (2013) · Zbl 1256.35055 · doi:10.1016/j.jde.2012.08.019
[52] Feireisl, E.; Neustupa, J.; Stebel, J., Convergence of a Brinkman-type penalization for compressible fluid flows, J. Differ. Equ., 250, 1, 596-606 (2011) · Zbl 1206.35194 · doi:10.1016/j.jde.2010.09.031
[53] Kreml, O.; Mácha, V.; Nečasová, Š.; Wróblewska-Kamińska, A., Flow of heat conducting fluid in a time-dependent domain, Z. Angew. Math. Phys, 69, 5 (2018) · Zbl 1404.35359 · doi:10.1007/s00033-018-1012-z
[54] Novotný, A.; Pokorný, M., Steady compressible Navier-Stokes-Fourier system for monoatomic gas and its generalizations, J. Diff. Equ, 251, 2, 270-315 (2011) · Zbl 1273.76354 · doi:10.1016/j.jde.2011.04.008
[55] Novotný, A.; Pokorný, M., Weak solutions for steady compressible Navier-Stokes-Fourier system in two space dimensions, Appl. Math, 56, 1, 137-160 (2011) · Zbl 1224.76108 · doi:10.1007/s10492-011-0013-4
[56] Pokorný, M.; Skříšovský, E., Weak solutions for compressible Navier-Stokes-Fourier system in two space dimensions with adiabatic exponent almost one, Acta. Appl. Math (2021) · Zbl 1469.76095
[57] Muha, B., A note on the trace theorem for domains which are locally subgraph of a Hölder continuous function, Netw. Heterog. Media, 9, 1, 191-196 (2014) · Zbl 1305.74031 · doi:10.3934/nhm.2014.9.191
[58] Mácha, V., Muha, B., Nečasová, Š., Roy, A., Trifunović, S. (2022). Existence of a weak solution to a nonlinear fluid-structure interaction problem with heat exchange arXiv:2109.11096, 2022.
[59] Poul, L., On dynamics of fluids in astrophysics, J. Evol. Equ, 9, 1, 37-66 (2009) · Zbl 1239.76025 · doi:10.1007/s00028-009-0006-x
[60] John, O.; Stará, J., On the regularity of weak solutions to parabolic systems in two spatial dimensions, Comm. Part. Diff. Equ, 23, 7-8, 1159-1170 (1998) · Zbl 0937.35020
[61] Kukučka, P., On the existence of finite energy weak solutions to the Navier-Stokes equations in irregular domains, Math. Meth. Appl. Sci, 32, 11, 1428-1451 (2009) · Zbl 1179.35218 · doi:10.1002/mma.1101
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.