×

A fluid-structure model coupling the Navier-Stokes equations and the Lamé system. (English) Zbl 1303.35060

The authors study the model of interaction between a fluid flow and an elastic solid. The solid parallelepiped \(\Omega_S\) floats into the parallelepiped \(\Omega\). The domain \(\Omega_F=\Omega\setminus\overline{\Omega_S}\) is occupied by the fluid. The domains \(\Omega_S\) and \(\Omega_F\) are time depended. The velocity of a fluid \(u(x,t)\) and the pressure \(p(x,t)\) satisfy to the Navier-Stokes equations \[ \begin{cases} \frac{\partial u}{\partial t}-\text{div}\,\mathbb{T}(u,p) u+u\cdot\nabla u=0,\quad \text{div}\,u=0,\quad x\in\Omega_F(t),\;t>0, \\ u(x,0)=u_0(x),\quad x\in\Omega_F(0), \end{cases} \] where \(\mathbb{T}(u,p)\) is the stress tensor \[ \mathbb{T}(u,p)=\nu(\nabla u+(\nabla u)^T)-p\mathbb{I}. \] The displacement \(w(x,t)\) of the elastic solid satisfies to the Lame system \[ \begin{cases} \frac{\partial^2 w}{\partial t^2}-\text{div}\,\sigma(w) =0,\quad x\in\Omega_S(t),\;t>0, \\ w(x,0)=0,\quad \frac{\partial w}{\partial t}(x,0)=w_1,\quad x\in\Omega_S(0), \end{cases} \] where \(\sigma(w)\) is the elastic stress tensor \[ \sigma(w)=\lambda\,\text{trace}\,\varepsilon(w)\mathbb{I}+ 2\mu\varepsilon(w),\quad \varepsilon(w)=\frac{1}{2}(\nabla w+(\nabla w)^T). \] On the fluid-solid interface the continuity of velocities and of the Cauchy stress forces are fulfilled. Function \(u\) satisfies to the Dirichlet boundary conditions on the exterior boundary, \(u\) and \(w\) satisfy to the periodic boundary conditions.
It is proved that the problem admits a unique strong local in time solution. The result is obtained by successive approximation method.

MSC:

35Q30 Navier-Stokes equations
76D03 Existence, uniqueness, and regularity theory for incompressible viscous fluids
76D05 Navier-Stokes equations for incompressible viscous fluids
74B05 Classical linear elasticity
35D35 Strong solutions to PDEs
Full Text: DOI

References:

[1] Avalos, G.; Lasiecka, I.; Triggiani, R., Higher regularity of a coupled parabolic-hyperbolic fluid-structure interactive system, Georgian Math. J., 15, 403-437 (2008) · Zbl 1157.35085
[2] Avalos, G.; Triggiani, R., The coupled PDE system arising in fluid/structure interaction. I. Explicit semigroup generator and its spectral properties, (Fluids and Waves. Fluids and Waves, Contemporary Mathematics, vol. 440 (2007), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI), 15-54 · Zbl 1297.74035
[3] Barbu, V.; Grujić, Z.; Lasiecka, I.; Tuiffaha, A., Smoothness of weak solutions to a nonlinear fluid-structure interaction model, Indiana Univ. Math. J., 57, 1173-1207 (2008) · Zbl 1147.74016
[4] Beale, J. T., The initial value problem for the Navier-Stokes equations with a free surface, Commun. Pure Appl. Math., 34, 359-392 (1981) · Zbl 0464.76028
[5] Beirão da Veiga, H., On the existence of strong solutions to a coupled fluid-structure evolution problem, J. Math. Fluid Mech., 6, 21-52 (2004) · Zbl 1068.35087
[6] Boulakia, M., Existence of weak solutions for the motion of an elastic structure in an incompressible viscous fluid, C. R. Math. Acad. Sci. Paris, 336, 985-990 (2003) · Zbl 1129.74306
[7] Boulakia, M., Existence of weak solutions for the three dimensional motion of an elastic structure in an incompressible viscous fluid, J. Math. Fluid Mech., 9, 262-294 (2007) · Zbl 1171.74337
[8] Boulakia, M.; Guerrero, S., A regularity result for a solid-fluid system associated to the compressible Navier-Stokes equations, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, 26, 777-813 (2009) · Zbl 1177.35146
[9] Boulakia, M.; Guerrero, S., Regular solutions of a problem coupling a compressible fluid and an elastic structure, J. Math. Pures Appl., 94, 341-365 (2010) · Zbl 1426.76651
[10] Boulakia, M.; Schwindt, E.; Takahashi, T., Existence of strong solutions for the motion of an elastic structure in an incompressible viscous fluid, Interfaces Free Bound., 14, 273-306 (2012) · Zbl 1260.35258
[11] Bucci, F.; Lasiecka, I., Regularity of boundary traces for a fluid-solid interaction model, Discrete Contin. Dyn. Syst., Ser. S, 4, 3, 505-521 (2011) · Zbl 1381.74076
[12] Chambolle, A.; Desjardins, B.; Esteban, M. J.; Grandmont, C., Existence of weak solutions for the unsteady interaction of a viscous fluid with an elastic plate, J. Math. Fluid Mech., 7, 368-404 (2005) · Zbl 1080.74024
[13] Ciarlet, P. G., Lectures on Three-Dimensional Elasticity (1983), Springer-Verlag: Springer-Verlag Berlin, Published for the Tata Institute of Fundamental Research, Bombay, Notes S. Kesavan (Ed.) · Zbl 0542.73046
[14] Coutand, D.; Shkoller, S., Motion of an elastic solid inside an incompressible viscous fluid, Arch. Ration. Mech. Anal., 176, 25-102 (2005) · Zbl 1064.74057
[15] Coutand, D.; Shkoller, S., The interaction between quasilinear elastodynamics and the Navier-Stokes equations, Arch. Ration. Mech. Anal., 179, 303-352 (2006) · Zbl 1138.74325
[16] Cumsille, P.; Tucsnak, M., Well-posedness of the Navier-Stokes flow in the exterior of the rotating obstacle, Math. Methods Appl. Sci., 29, 595-623 (2006) · Zbl 1093.76013
[17] Cumsille, P.; Takahashi, T., Well-posedness for the system modeling the motion of a rigid body of arbitrary form in an incompressible viscous fluid, Czechoslov. Math. J., 58, 133, 961-992 (2008) · Zbl 1174.35092
[18] Desjardins, B.; Esteban, M. J.; Grandmont, C.; Le Tallec, P., Weak solutions for a fluid-elastic structure interaction model, Rev. Math. Comput., 14, 523-538 (2001) · Zbl 1007.35055
[19] Desjardins, B.; Esteban, M. J., Existence of weak solutions for the motion of rigid bodies in a viscous fluid, Arch. Ration. Mech. Anal., 146, 59-71 (1999) · Zbl 0943.35063
[21] Feireisl, E., On the motion of rigid bodies in a viscous incompressible fluid, J. Evol. Equ., 3, 419-441 (2003) · Zbl 1039.76071
[22] Galdi, G. P., On the steady self-propelled motion of a body in a viscous incompressible fluid, Arch. Ration. Mech. Anal., 148, 53-88 (1999) · Zbl 0957.76012
[23] Galdi, G. P., On the motion of a rigid body in a viscous liquid: a mathematical analysis with applications, (Handbook of Mathematical Fluid Dynamics, vol. I (2002), North-Holland: North-Holland Amsterdam), 653-791 · Zbl 1230.76016
[24] Galdi, G. P.; Kyed, M., Steady flow of a Navier-Stokes liquid past an elastic body, Arch. Ration. Mech. Anal., 194, 849-875 (2009) · Zbl 1291.76079
[25] Geissert, M.; Götze, K.; Hieber, M., \(L_p\)-theory for strong solutions to fluid-rigid body interaction in Newtonian and generalized Newtonian fluids, Trans. Amer. Math. Soc., 365, 1393-1439 (2013) · Zbl 1282.35273
[26] Grandmont, C.; Maday, Y., Existence for an unsteady fluid-structure interaction problem, Modél. Math. Anal. Numér., 34, 609-636 (2000) · Zbl 0969.76017
[27] Grandmont, C., Existence for a three-dimensional steady state fluid-structure interaction problem, J. Math. Fluid Mech., 4, 76-94 (2002) · Zbl 1009.76016
[28] Grandmont, C., Existence of weak solutions for the unsteady interaction of a viscous fluid with an elastic plate, SIAM J. Math. Anal., 40, 716-737 (2008) · Zbl 1158.74016
[29] Grubb, G.; Solonnikov, V. A., Boundary value problems for the nonstationary Navier-Stokes equations treated by pseudo-differential methods, Math. Scand., 69, 217-290 (1991) · Zbl 0766.35034
[30] Guidoboni, G.; Guidorzi, M.; Padula, M., Continuous dependence on initial data in fluid-structure motions, J. Math. Fluid Mech., 14, 1-32 (2012) · Zbl 1294.35099
[31] Guidorzi, M.; Padula, M.; Plotnikov, P. I., Hopf solutions to a fluid-elastic interaction model, Math. Models Methods Appl. Sci., 18, 215-269 (2008) · Zbl 1153.76338
[32] Kukavica, I.; Tuffaha, A.; Ziane, M., Strong solutions for a fluid structure interaction system, Adv. Differ. Equ., 15, 231-254 (2010) · Zbl 1191.35206
[33] Kukavica, I.; Tuffaha, A.; Ziane, M., Strong solutions to a Navier-Stokes-Lamé system on a domain with a non-flat boundary, Nonlinearity, 24, 159-176 (2012) · Zbl 1372.76029
[34] Kukavica, I.; Tuffaha, A., Solutions to a fluid-structure interaction free boundary problem, Discrete Contin. Dyn. Syst., 32, 1355-1389 (2012) · Zbl 1234.35320
[35] Lasiecka, I.; Lions, J.-L.; Triggiani, R., Nonhomogeneous boundary value problems for second order hyperbolic operators, J. Math. Pures Appl., 65, 149-192 (1986) · Zbl 0631.35051
[36] Lequeurre, J., Existence of strong solutions to a fluid-structure system, SIAM J. Math. Anal., 43, 389-410 (2011) · Zbl 1232.35118
[37] Lions, J. L.; Magenes, E., Non-Homogeneous Boundary Value Problems and Applications, vol. 2 (1972), Springer: Springer Berlin-Heidelberg-New York · Zbl 0227.35001
[38] Muha, B.; Canic, S., Existence of a weak solution to a nonlinear fluid-structure interaction problem modeling the flow of an incompressible, viscous fluid in a cylinder with deformable walls, Arch. Ration. Mech. Anal., 207, 919-968 (2013) · Zbl 1260.35148
[39] Nguyen, P. A.; Raymond, J.-P., Control problems for convection-diffusion equations with control localized on manifolds, ESAIM Control Optim. Calc. Var., 6, 467-488 (2001) · Zbl 1004.49019
[40] Quarteroni, A.; Tuveri, M.; Veneziani, A., Computational vascular fluid dynamics: problems, models and methods, Comput. Vis. Sci., 2, 163-197 (2000) · Zbl 1096.76042
[41] Raymond, J.-P., Stokes and Navier-Stokes equations with a nonhomogeneous divergence condition, Discrete Contin. Dyn. Syst., Ser. B, 14, 1537-1564 (2010) · Zbl 1213.35344
[42] Raymond, J.-P., Feedback stabilization of a fluid-structure model, SIAM J. Control Optim., 48, 5398-5443 (2010) · Zbl 1213.93177
[43] Runst, T.; Sickel, W., Sobolev Spaces of Fractional Order, Nemytskij Operators, and Nonlinear Partial Differential Equations (1996), Walter de Gruyter: Walter de Gruyter Berlin, New York · Zbl 0873.35001
[44] San Martín, J.; Scheid, J. F.; Takahashi, T.; Tucsnak, M., An initial and boundary value problem modeling of fish-like swimming, Arch. Ration. Mech. Anal., 188, 429-455 (2008) · Zbl 1138.76072
[45] San Martín, J.; Starovoitov, V.; Tucsnak, M., Global weak solutions for the two dimensional motion of several rigid bodies in an incompressible viscous fluid, Arch. Ration. Mech. Anal., 161, 113-147 (2002) · Zbl 1018.76012
[46] Schwindt, E., Problèmes d’interaction entre un fluide Newtonien incompressible et une structure (2012), PhD thesis, Nancy
[47] Solonnikov, V. A., Solvability of the problem of evolution of a viscous incompressible fluid bounded by a free surface on a finite time interval, St. Petersburg Math. J., 3, 189-220 (1992) · Zbl 0850.76132
[48] Takahashi, T., Analysis of strong solutions for the equations modeling the motion of a rigid-fluid system in a bounded domain, Adv. Differ. Equ., 8, 1499-1532 (2003) · Zbl 1101.35356
[49] Takahashi, T.; Tucsnak, M., Global strong solutions for the two-dimensional motion of an infinite cylinder in a viscous fluid, J. Math. Fluid Mech., 6, 53-77 (2004) · Zbl 1054.35061
[50] Temam, R., Navier-Stokes Equations. Theory and Numerical Analysis (2001), AMS Chelsea Publishing: AMS Chelsea Publishing Providence, RI, Reprint of the 1984 edition · Zbl 0981.35001
[51] Temam, R., Navier-Stokes Equations and Nonlinear Functional Analysis, CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 66 (1995), Society for Industrial and Applied Mathematics (SIAM): Society for Industrial and Applied Mathematics (SIAM) Philadelphia, PA · Zbl 0833.35110
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.