×

On the global regularity for minimizers of variational integrals: splitting-type problems in 2D and extensions to the general anisotropic setting. (English) Zbl 1500.49021

Summary: We mainly discuss superquadratic minimization problems for splitting-type variational integrals on a bounded Lipschitz domain \(\Omega \subset{\mathbb{R}}^2\) and prove higher integrability of the gradient up to the boundary by incorporating an appropriate weight-function measuring the distance of the solution to the boundary data. As a corollary, the local Hölder coefficient with respect to some improved Hölder continuity is quantified in terms of the function \({\text{dist}}(\cdot,\partial \Omega)\).The results are extended to anisotropic problems without splitting structure under natural growth and ellipticity conditions. In both cases we argue with variants of Caccioppoli’s inequality involving small weights.

MSC:

49N60 Regularity of solutions in optimal control
49Q20 Variational problems in a geometric measure-theoretic setting
49J45 Methods involving semicontinuity and convergence; relaxation

References:

[1] Giaquinta, M., Growth conditions and regularity, a counterexample, Manuscripta Math., 59, 2, 245-248 (1987) · Zbl 0638.49005 · doi:10.1007/BF01158049
[2] Marcellini, P., Regularity of minimizers of integrals of the calculus of variations with nonstandard growth conditions, Arch. Ration. Mech. Anal., 3, 267-284 (1989) · Zbl 0667.49032 · doi:10.1007/BF00251503
[3] Choe, HJ, Interior behaviour of minimizers for certain functionals with nonstandard growth, Nonlinear Anal., 19, 10, 933-945 (1992) · Zbl 0786.35040 · doi:10.1016/0362-546X(92)90105-N
[4] Esposito, L.; Leonetti, F.; Mingione, G., Higher integrability for minimizers of integral functionals with (p, q) growth, J. Differ. Equ., 157, 2, 414-438 (1999) · Zbl 0939.49021 · doi:10.1006/jdeq.1998.3614
[5] Fusco, N.; Sbordone, C., Some remarks on the regularity of minima of anisotropic integrals, Commun. Partial Differ. Equ., 18, 1-2, 153-167 (1993) · Zbl 0795.49025 · doi:10.1080/03605309308820924
[6] Bildhauer, M.: Convex, Variational Problems. Linear, Nearly Linear and Anisotropic Growth Conditions, Volume, of Lecture Notes in Mathematics, p. 2003. Springer, Berlin (1818)
[7] Bildhauer, M., Fuchs, higher integrability of the gradient for vectorial minimizers of decomposable variational integrals, Manuscripta Math., 123, 3, 269-283 (2007) · Zbl 1120.49031 · doi:10.1007/s00229-007-0096-0
[8] Bildhauer, M., Fuchs, M., Zhong, X.: A regularity theory for scalar local minimizers of splitting-type variational integrals. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 6(3), 385-404 (2007) · Zbl 1150.49015
[9] Beck, L., Mingione, G.: Lipschitz bounds and nonuniform ellipticity. Commun. Pure Appl. Math. LXXIII:944-1034 (2020) · Zbl 1445.35140
[10] Leonetti, F.; Siepe, F., Global integrability for minimizers of anisotropic functionals, Manuscripta Math., 144, 1-2, 91-98 (2014) · Zbl 1287.49041 · doi:10.1007/s00229-013-0641-y
[11] Koch, L.: Global higher integrability for minimisers of convex functionals with (p,q)-growth. Calc. Var. Partial Differ. Equ. 60(2):Paper No. 63 (2021) · Zbl 1461.49017
[12] Adams, R.A., Fournier, J.: Sobolev Spaces, Volume 140 of Pure and Applied Mathematics, , second edition. Elsevier, Amsterdam (2003) · Zbl 1098.46001
[13] Demengel, F., Demengel G.: Functional Spaces for the Theory of Elliptic Partial Differential Equations (Translation from French Original). Universitext. Springer (EDP Sciences), London (Les Ulis), 2012 (2007) · Zbl 1159.46001
[14] Esposito, L.; Leonetti, F.; Mingione, G., Sharp regularity for functionals with (p, q) growth, J. Differ. Equ., 204, 1, 5-55 (2004) · Zbl 1072.49024 · doi:10.1016/j.jde.2003.11.007
[15] Marcellini, P., Regularity and existence of solutions of elliptic equations with p, q-growth conditions, J. Differ. Equ., 90, 1, 1-30 (1991) · Zbl 0724.35043 · doi:10.1016/0022-0396(91)90158-6
[16] Gilbarg, D., Trudinger, N.: Elliptic Partial Differential Equations of Second Order, Volume 224 of Grundlehren der math. Wiss., Revised Third Printing, second edition. Springer, Berlin (1998) · Zbl 1042.35002
[17] Bildhauer, M.; Fuchs, M., Splitting type variational problems with linear growth conditions, J. Math. Sci. (N.Y.) Probl. Math. Anal. No. 105, 250, 2, 45-58 (2020) · Zbl 1448.49011
[18] Rákosnik, J., Some remarks to anisotropic Sobolev spaces. I, Beiträge Anal., 13, 55-68 (1979) · Zbl 0399.46025
[19] Rákosnik, J., Some remarks to anisotropic Sobolev spaces. II, Beiträge Anal., 15, 127-140 (1981) · Zbl 0494.46034
[20] Bildhauer, M., Fuchs, M.: Small weights in Caccioppoli’s inequality and applications to Liouville-type theorems for non-standard problems. Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 508, 73-88 (2021)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.