×

Splitting type variational problems with linear growth conditions. (English. Russian original) Zbl 1448.49011

J. Math. Sci., New York 250, No. 2, 232-249 (2020); translation from Probl. Mat. Anal. 105, 45-58 (2020).
Summary: Regularity properties of solutions to variational problems are established for a broad class of strictly convex splitting type energy densities of the principal form \(f : \mathbb{R}^2 \rightarrow \mathbb{R}\), \(f (\xi_1, \xi_2) = f_1( \xi_1) + f_2( \xi_2)\), with linear growth. We show that, regardless of the corresponding property of \(f_2\), the assumption \((t \in \mathbb{R})\) \[c_1(1+|t|)^{-\mu_1}\le f''_1 (t)\le c_2,\quad 1<\mu_1<2,\] is sufficient to obtain higher integrability of \(\partial_1u\) for any finite exponent. We also include a series of variants of our main theorem. In the case \(f : \mathbb{R}^n \rightarrow \mathbb{R} \), similar results hold with the obvious changes in notation.

MSC:

49J30 Existence of optimal solutions belonging to restricted classes (Lipschitz controls, bang-bang controls, etc.)
35B65 Smoothness and regularity of solutions to PDEs

References:

[1] Bildhauer, M.; Fuchs, M., On a class of variational integrals with linear growth satisfying the condition of μ-ellipticity, Rend. Mat. Appl., 22, 249-274 (2002) · Zbl 1047.49029
[2] Bildhauer, M., Two dimensional variational problems with linear growth, Manuscr. Math., 110, 325-342 (2003) · Zbl 1026.49028 · doi:10.1007/s00229-002-0338-0
[3] Giusti, E., Minimal Surfaces and Functions of Bounded Variation (1984), Basel etc: Birkhäuser, Basel etc · Zbl 0545.49018
[4] Giaquinta, M.; Modica, G.; Soucěk, J., Cartesian Currents in the Calculus of Variations I. Cartseian Currents (1998), Berlin etc: Springer, Berlin etc · Zbl 0914.49001
[5] Giaquinta, M.; Modica, G.; Soucěk, J., Cartesian Currents in the Calculus of Variations II. Variational Integrals (1998), Berlin etc: Springer, Berlin etc · Zbl 0914.49002
[6] Ambrosio, L.; Fusco, N.; Pallara, D., Functions of Bounded Variation and Free Discontinuity Problems (2000), Oxford: Clarendon Press, Oxford · Zbl 0957.49001
[7] Bildhauer, M., Convex Variational Problems: Linear , Nearly Linear and Anisotropic Growth Conditions (2003), Berlin etc: Springer, Berlin etc · Zbl 1033.49001
[8] Giaquinta, M.; Modica, G.; Souček, J., Functionals with linear growth in the calculus of variations. I, Commentat. Math. Univ. Carol., 20, 1, 143-156 (1979) · Zbl 0409.49006
[9] Giaquinta, M.; Modica, G.; Souček, J., Cartesian Currents in the Calculus of Variations II (1998), Berlin etc: Springer, Berlin etc · Zbl 0914.49002
[10] Seregin, G., Variational-difference schemes for problems of the mechanics of ideally elastoplastic media, U.S.S.R. Comput. Math. Phys., 25, 1, 153-165 (1985) · Zbl 0584.73039 · doi:10.1016/0041-5553(85)90056-4
[11] Seregin, G., Two-dimensional variational problems of the theory of plasticity, Izv. Math., 60, 1, 179-216 (1996) · Zbl 0881.73039 · doi:10.1070/IM1996v060n01ABEH000067
[12] Bildhauer, M., A priori gradient estimates for bounded generalized solutions of a class of variational problems with linear growth, J. Convex Anal., 9, 1, 117-137 (2002) · Zbl 1011.49022
[13] Marcellini, P.; Papi, G., Nonlinear elliptic systems with general growth, J. Differ. Equations, 221, 2, 412-443 (2006) · Zbl 1330.35131 · doi:10.1016/j.jde.2004.11.011
[14] Beck, L.; Schmidt, T., On the Dirichlet problem for variational integrals in BV, J. Reine Angew. Math., 674, 113-194 (2013) · Zbl 1260.49079
[15] Beck, L.; Bulíčcek, M.; Málek, J.; Süli, E., On the existence of integrable solutions to nonlinear elliptic systems and variational problems with linear growth, Arch. Ration. Mech. Anal., 225, 2, 717-769 (2017) · Zbl 1375.35164 · doi:10.1007/s00205-017-1113-4
[16] Bulíček, M.; Málek, J.; Süli, E., Analysis and approximation of a strain-limiting nonlinear elastic model, Math. Mech. Solids, 20, 1, 92-118 (2015) · Zbl 1327.74032 · doi:10.1177/1081286514543601
[17] Bulíček, M.; Málek, J.; Rajagopal, K.; Süli, E., On elastic solids with limiting small strain: modelling and analysis, EMS Surv. Math. Sci., 1, 2, 283-332 (2014) · Zbl 1314.35184 · doi:10.4171/EMSS/7
[18] Bulíček, M.; Málek, J.; Rajagopal, K.; Walton, JR, Existence of solutions for the antiplane stress for a new class of ‘strain-limiting’ elastic bodies, Calc. Var. Partial Differ. Equ., 54, 2, 2115-2147 (2015) · Zbl 1329.35302 · doi:10.1007/s00526-015-0859-5
[19] M. Bildhauer and M. Fuchs, “On a class of variational problems with linear growth and radial symmetry,” Commentat. Math. Univ. Carol. [To appear] · Zbl 1047.49029
[20] Beck, L.; Bulíček, M.; Maringová, E., Globally Lipschitz minimizers for variational problems with linear growth, ESAIM, Control Optim. Calc. Var., 24, 4, 1395-1403 (2018) · Zbl 1418.35179 · doi:10.1051/cocv/2017065
[21] Giaquinta, M., Growth conditions and regularity, a counterexample, Manuscr. Math., 59, 245-248 (1987) · Zbl 0638.49005 · doi:10.1007/BF01158049
[22] Marcellini, P., Regularity of minimizers of integrals of the calculus of variations with nonstandard growth conditions, Arch. Rat. Mech. Anal., 105, 267-284 (1989) · Zbl 0667.49032 · doi:10.1007/BF00251503
[23] Esposito, L.; Leonetti, F.; Mingione, G., Higher integrability for minimizers of integral functionals with (p,q) growth, J. Differ. Equations, 157, 2, 414-438 (1999) · Zbl 0939.49021 · doi:10.1006/jdeq.1998.3614
[24] Beck, L.; Mingione, G., Optimal Lipschitz criteria and local estimates for non-uniformly elliptic problems, Atti Accad. Naz. Lincei, Cl. Sci. Fis. Mat. Nat., IX. Ser., Rend. Lincei, Mat. Appl., 30, 2, 223-236 (2019) · Zbl 1471.49024 · doi:10.4171/RLM/844
[25] Fusco, N.; Sbordone, C., Some remarks on the regularity of minima of anisotropic integrals, Commun. Partial Differ. Equations, 18, 1-2, 153-167 (1993) · Zbl 0795.49025 · doi:10.1080/03605309308820924
[26] Breit, D., A note on splitting type variational problems with subquadratic growth, Arch. Math., 94, 5, 467-476 (2010) · Zbl 1192.49041 · doi:10.1007/s00013-010-0115-3
[27] Bildhauer, M.; Fuchs, M.; Zhong, X., A regularity theory for scalar local minimizers of splitting type variational integrals, Ann. Sc. Norm. Super. Pisa, Cl. Sci. (5), 6, 3, 385-404 (2007) · Zbl 1150.49015
[28] M. Bildhauer and M. Fuchs, “Variational problems of splitting-type with mixed linearsuperlinear growth conditons,” J. Math. Anal. Appl.10.1016/j.jmaa.2020.124452
[29] Bildhauer, M., A uniqueness theorem for the dual problem associated to a variational problem with linear growth, J. Math. Sci., New York, 115, 6, 2747-2752 (2003) · Zbl 1027.49016 · doi:10.1023/A:1023313701565
[30] Gilbarg, D.; Trudinger, NS, Elliptic Partial Differential Equations of Second Order (1998), Berlin: Springer, Berlin · Zbl 1042.35002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.