×

The stochastic extinction and stability conditions for nonlinear malaria epidemics. (English) Zbl 1497.92307


MSC:

92D30 Epidemiology

References:

[1] World malaria report 2017
[2] D. Wanduku, Threshold conditions for a family of epidemic dynamic models for malaria with distributed delays in a non-random environment, Int. J. Biomath., 11 (2018), 1850085-1850130. · Zbl 1396.92086
[3] Dengue control, Report of World Health Organization, 2019. Available from: http://www.who. int/denguecontrol/human/en/.
[4] Malaria, Report of Global Health, Division of Parasitic Diseases and Malaria, 2019. Available from: https://www.cdc.gov/malaria/about/disease.html.
[5] J. M. Crutcher and S. L. Hoffman, Malaria, Chapter 83-malaria, Medical Microbiology, 4th edi-tion, Galveston (TX), University of Texas Medical Branch at Galveston, 1996.
[6] D. L. Doolan, C. Dobano and J. K. Baird, Acquired Immunity to Malaria, Clin. Microbiol. Rev.,22 (2009), 13-36.
[7] L. Hviid, Naturally acquired immunity to Plasmodium falciparum malaria, Acta Trop., 95 (2005), 270-275.
[8] E. Avila and V. Buonomo, Analysis of a mosquito-borne disease transmission model with vector stages and nonlinear forces of infection, Ric. Mat., 64 (2015), 377-390. · Zbl 1335.92089
[9] Z. Bai and Y. Zhou, Global dynamics of an SEIRS epidemic model with periodic vaccination and seasonal contact rate, Nonlinear Anal. Real World Appl., 13 (2012), 1060-1068. · Zbl 1239.34038
[10] M. De la Sena, S. Alonso-Quesadaa and A. Ibeasb, On the stability of an SEIR epidemic model withdistributedtime-delayandageneralclassoffeedbackvaccinationrules, Appl.Math.Comput.,270 (2015), 953-976. · Zbl 1410.92059
[11] M. De la Sen, S. Alonso-Quesada and A. Ibeas, On the stability of an SEIR epidemic model with distributed time-delay and a general class of feedback vaccination rules, Appl. Math. Comput., 270 (2015), 953-976. · Zbl 1410.92059
[12] N. H. Du and N. N. Nhu, Permanence and extinction of certain stochastic SIR models perturbed by a complex type of noises, Appl. Math. Lett., 64 (2017), 223-230. · Zbl 1354.92090
[13] Z. Jiang, W. Ma and J. Wei, Global Hopf bifurcation and permanence of a delayed SEIRS epidemic model, Math. Comput. Simulation, 122 (2016), 35-54. · Zbl 1519.92263
[14] Q. Liu, D. Jiang, N. Shi, et al., Asymptotic behaviors of a stochastic delayed SIR epidemic model with nonlinear incidence, Commun. Nonlinear Sci. Numer. Simul., 40 (2016), 89-99. · Zbl 1510.92215
[15] Q. Liu and Q. Chen, Analysis of the deterministic and stochastic SIRS epidemic models with nonlinear incidence, Phys. A, 428 (2015), 140-153. · Zbl 1400.92515
[16] J. P. Mateus and C. M. Silva, Existence of periodic solutions of a periodic SEIRS model with general incidence, Nonlinear Anal. Real World Appl., 34 (2017), 379-402. · Zbl 1354.34085
[17] J. P. Mateus and C. M. Silva, A non-autonomous SEIRS model with general incidence rate, Appl. Math. Comput., 247 (2014), 169-189. · Zbl 1338.92133
[18] L. Pang, S. Ruan, S. Liu, et al., Transmission dynamics and optimal control of measles epidemics,Appl. Math. Comput., 256 (2015), 131-147. · Zbl 1338.92135
[19] S. Syafruddin and M. Salmi Md. Noorani, Lyapunov function of SIR and SEIR model for trans-mission of dengue fever disease, Int. J. Simul. Process Model., 8 (2013), 2-3.
[20] D. Wanduku, Complete Global Analysis of a Two-Scale Network SIRS Epidemic Dynamic Model with Distributed Delay and Random Perturbation,J. Appl. Math. Comput., 294 (2017), 49-76. · Zbl 1411.34103
[21] D. Wanduku and G. S. Ladde, Fundamental Properties of a Two-scale Network stochastic human epidemic Dynamic model, Neural Parallel Sci. Comput., 19 (2011), 229-270. · Zbl 1260.92083
[22] R. Ross, The Prevention of Malaria, John Murray, London, 1911.
[23] R. M. Anderson and R. M. May, Infectious Diseases of Humans: Dynamics and Control, Oxford University Press, Oxford, 1991.
[24] N. Chitnis, J. M. Hyman and J. M. Cushing, Determining important parameters in the spread of malaria through the sensitivity analysis of a mathematical model, Bull. Math. Biol., 70 (2008), 1272-1296. · Zbl 1142.92025
[25] M. Y. Hyun, Malaria transmission model for different levels of acquired immunity and temperature dependent parameters (vector). Rev. Saude Publica, 34 (2000), 223-231.
[26] G. Macdonald, The analysis of infection rates in diseases in which superinfection occurs. Trop. Dis. Bull., 47 (1950), 907-915.
[27] G. A. Ngwa and W. Shu, A mathematical model for endemic malaria with variable human and mosquito population, Math. computer. model., 32 (2000), 747-763. · Zbl 0998.92035
[28] G. A. Ngwa, A. M. Niger and A. B. Gumel, Mathematical assessment of the role of non-linear birth and maturation delay in the population dynamics of the malaria vector, Appl. Math. Comput.,217 (2010), 3286-3313. · Zbl 1203.92041
[29] C. N. Ngonghala , G. A. Ngwa and M. I. Teboh-Ewungkem, Periodic oscillations and backward bifurcation in a model for the dynamics of malaria transmission. Math. Biosci., 240 (2012), 45-62. · Zbl 1319.92057
[30] M. I. Teboh-Ewungkem and T. Yuster, A within-vector mathematical model of plasmodium fal-ciparum and implications of incomplete fertilization on optimal gametocyte sex ratio, J. Theory Biol., 264 (2010), 273-286. · Zbl 1406.92065
[31] R. Reiner, M. Geary, P. Atkinson, et al., Seasonality of Plasmodium falciparum transmission: a systematic review, Malar. J, 14 (2015), 343.
[32] A. Teklehaimanot and P. Mejia, Malaria and poverty, Ann. N. Y. Acad. Sci., 1136 (2008), 32-37.
[33] D. Wanduku and G. S. Ladde, Global properties of a two-scale network stochastic delayed human epidemic dynamic model, Nonlinear Anal. Real World Appl., 13 (2012), 794-816. · Zbl 1238.60046
[34] E. Beretta, V. Kolmanovskii and L. Shaikhet, Stability of epidemic model with time delay influ-enced by stochastic perturbations, Math. Comput. Simulat., 45 (1998), 269-277. · Zbl 1017.92504
[35] E. J. Allen, L. J. S. Allen, A. Arciniega, et al., Construction of equivalent stochastic differential equation models, Stoch. Anal. Appl. , 26 (2008), 274-297. · Zbl 1137.60026
[36] Y. Cai, J. jiao, Z. Gui, et al., Environmental variability in a stochastic epidemic model, Appl. Math. Comput., 329 (2018), 210-226. · Zbl 1427.34073
[37] M. Krstic, The effect of stochastic perturbation on a nonlinear delay malaria epidemic model,Math. Comput. Simulat., 82 (2011), 558-569. · Zbl 1245.60058
[38] P. V. V. Le, P. Kumar and M. O. Ruiz, Stochastic lattice-based modelling of malaria dynamics,Malar. J., 17 (2018), 250.
[39] D. Wanduku, A comparative stochastic and deterministic study of a class of epidemic dynamic models for malaria: exploring the impacts of noise on eradication and persistence of disease, preprint arXiv:1809.03897. · Zbl 1465.92131
[40] Y. Cai, Y. Kang and W. Wang, a stochastic SIRS epidemic model with nonlinear incidence, Appl. Math. Comput., 305 (2017), 221-240. · Zbl 1411.92267
[41] Y. Cai, Y. kang, M. Banerjee, et al., A stochastic epidemic model incorporating media coverage,Commun. math sci., 14 (2016), 893-910. · Zbl 1344.92155
[42] A. Gray, D. Greenhalgh, L. Hu, et al., A Stochastic Differential Equation SIS Epidemic Model,SIAM J. Appl. Math., 71 (2011), 876-902. · Zbl 1263.34068
[43] A. lahrouz and L. Omari, extinction and stationary distribution of a stochastic SIRS epidemic model with non-linear incidence, Statist. Probab. Lett., 83 (2013), 960-968 · Zbl 1402.92396
[44] Y. zhang, K. Fan, S. Gao, et al., A remark on stationary distribution of a stochastic SIR epidemic model with double saturated rates, Appl. Math. Lett., 76 (2018), 46-52. · Zbl 1376.92072
[45] Y. Zhou, W. Zhang, S. Yuan, et al., Persistence And Extinction in Stochastic Sirs Models With General Nonlinear Incidence Rate, Electron. J. Differ. Eq., 2014 (2014), 1-17. · Zbl 1294.34054
[46] K. L. Cooke, Stability analysis for a vector disease model. Rocky Mountain J. Math., 9 (1979), 31-42. · Zbl 0423.92029
[47] C. McCluskey, Global Stability of an SIR epidemic model with delay and general nonlinear inci-dence, Math. Biosci. Eng., 4 (2010), 837-850. · Zbl 1259.34067
[48] Y. Takeuchi, W. Ma and E. Beretta, Global asymptotic properties of a delay SIR epidemic model with finite incubation times, Nonlinear Anal., 42 (2000), 931-947. · Zbl 0967.34070
[49] D. Wanduku, Modeling Highly Random Dynamical Infectious Systems, in Applied Mathemati-cal Analysis: Theory, Methods, and Applications (eds. Dutta H., Peters J.), Studies in Systems, Decision and Control, 177 (2020), Springer, Cham. · Zbl 1423.37070
[50] D. Wanduku and G. S. Ladde, The global analysis of a stochastic two-scale Network Human Epidemic Dynamic Model With Varying Immunity Period, J. Appl. Math. Phys., 5 (2017), 1150-1173.
[51] D. Wanduku and G. S. Ladde, Global Stability of Two-Scale Network Human Epidemic Dynamic Model, Neural Parallel Sci. Comput., 19 (2011), 65-90. · Zbl 1228.92069
[52] M. Zhien and C. Guirong, Persistence and extinction of a population in a polluted environment,Math Biosci., 101 (1990), 75-97. · Zbl 0714.92027
[53] X. Zhang, D. Jiang, T. Hayat, et al., Dynamics of stochastic SIS model with doubles epidemic diseases driven by levy jumps, Phys. A, 47 (2017), 767-777. · Zbl 1400.92564
[54] X. Mao, Stochastic differential equations and applications, 2nd ed, Horwood Publishing Ltd., 2008.
[55] D.Wanduku, SomestochasticstabilitypropertiesofanonlinearfamilyofSEIRSepidemicmodels, in press, 2019.
[56] S. Ruan, D. Xiao and J. C. Beier, On the delayed rossmacdonald model for malaria transmission.Bull. Math. Biol., 70 (2008), 1098-1114. · Zbl 1142.92040
[57] R. E. Howes, K. E. Battle, K. N. Mendis, et al., Global Epidemiology of Plasmodium vivax, Am. J. Trop. Med. Hyg., 95 (2016), 15-34.
[58] Aedes aegypti in Brazil, Report of OXITEC, 2019. Available from: https://www.oxitec.com/friendly-mosquitoes/brazil/.
[59] Piracicaba, SP, Report of Atlas of Human Development in Brazil, 2019. Available from: http: //www.atlasbrasil.org.br/2013/en/perfil_m/piracicaba_sp/.
[60] The World Factbook, Report of Central Intelligence Agency, 2019. Available from: https://www.cia.gov/library/publications/the-world-factbook/geos/br.html.
[61] World Malaria Report 2011, Report of World Health Organization, 2011. Available from: https: //www.who.int/malaria/publications/atoz/9789241564403/en/.
[62] M. T Bretscher, N. Maire, I. Felger, et al. , Asymptomatic Plasmodium falciparum infections may not be shortened by acquired immunity, Malar. J., 14 (2015), 294.
[63] S. M. Moghadas and A. B. Gumel, Global Stability of a two-stage epidemic model with general-ized nonlinear incidence, Math. Comput. Simulat., 60 (2002), 107-118. · Zbl 1005.92031
[64] K. L. Cooke and P. van den Driessche, Analysis of an SEIRS epidemic model with two delays, J. Math Biol. 35 (1996), 240-260. · Zbl 0865.92019
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.