×

A stochastic SIRS epidemic model with nonlinear incidence rate. (English) Zbl 1411.92267

Summary: In this paper, we investigate the global dynamics of a general SIRS epidemic model with a ratio-dependent incidence rate and its corresponding stochastic differential equation version. For the deterministic model, we show that the basic reproduction number \(\mathcal{R}_0\) determines whether there is an endemic outbreak or not: if \(\mathcal{R}_0 < 1\), the disease dies out; while if \(\mathcal{R}_0 > 1\), the disease persists. For the stochastic model, we show that its related reproduction number \(\mathcal{R}_0^S\) can determine whether there is a unique disease-free stationary distribution or a unique endemic stationary distribution. In addition, we provide analytic results regarding the stochastic boundedness and permanence/extinction. One of the most interesting findings is that random fluctuations introduced in our stochastic model can suppress disease outbreak, which can provide us some useful control strategies to regulate disease dynamics.

MSC:

92D30 Epidemiology
Full Text: DOI

References:

[1] W.H.O., 2011, The top 10 causes of death. http:www.who.int/mediacentre/factsheets/fs310/en/index.html; W.H.O., 2011, The top 10 causes of death. http:www.who.int/mediacentre/factsheets/fs310/en/index.html
[2] Kermack, W. O.; McKendrick, A. G., Contributions to the mathematical theory of epidemics-i, Proc. R. Soc. Lond. A, 115, 772, 701-721 (1927) · JFM 53.0517.01
[3] Ma, Z.; Zhou, Y.; Wu, J., Modeling and Dynamics of Infectious Diseases (2009), Higher Education Press: Higher Education Press Beijing · Zbl 1180.92081
[4] Keeling, M.; Rohani, P., Modeling Infectious Diseases in Humans and Animals (2008), Princeton University Press: Princeton University Press New Jersey · Zbl 1279.92038
[5] Sen, M. D.L.; Agarwal, R. P.; Ibeas, A.; Alonso-Quesada, S., On a generalized time-varying SEIR epidemic model with mixed point and distributed time-varying delays and combined regular and impulsive vaccination controls, Adv. Differ. Equ., 2010, 1-42 (2009) · Zbl 1219.34104
[6] Sen, M. D.L.; Alonso-Quesadaa, S.; Ibeas, A., On the stability of an SEIR epidemic model with distributed time-delay and a general class of feedback vaccination rules, Appl. Math. Comput., 270, 953-976 (2015) · Zbl 1410.92059
[7] Tuckwell, H. C.; Williams, R. J., Some properties of a simple stochastic epidemic model of SIR type, Math. Biosci., 208, 1, 76-97 (2007) · Zbl 1116.92061
[8] Spencer, S., Stochastic Epidemic Models for Emerging Diseases (2008), University of Nottingham: University of Nottingham Nottinghamshire, (P.hd. thesis)
[9] Beddington, J. R.; May, R. M., Harvesting natural populations in a randomly fluctuating environment, Science, 197, 4302, 463-465 (1977)
[10] Allen, L. J.S., An Introduction to Stochastic Epidemic Models, (Brauer, F.; Driessche, P.; Wu, J., Mathematical Epidemiology (2008), Springer: Springer Berlin Heidelberg), 81-130 · Zbl 1206.92022
[11] Thomas, C. G., Introduction to Stochastic Differential Equations (1988), Dekker: Dekker New York · Zbl 0628.60064
[12] Mao, X., Stochastic Differential Equations and their Applications (2007), Horwood, Chichester: Horwood, Chichester UK · Zbl 1138.60005
[13] Durrett, R., Stochastic spatial models, SIAM Rev., 41, 4, 677-718 (1999) · Zbl 0940.60086
[14] Khasminskii, R. Z.; Klebaner, F. C., Long term behavior of solutions of the Lotka-Volterra system under small random perturbations, Ann. Appl. Probab., 11, 3, 952-963 (2001) · Zbl 1061.34513
[15] Mao, X.; Marion, G.; Renshaw, E., Environmental Brownian noise suppresses explosions in population dynamics, Stoch. Process. Appl., 97, 1, 95-110 (2002) · Zbl 1058.60046
[16] Truscott, J. E.; Gilligan, C. A., Response of a deterministic epidemiological system to a stochastically varying environment, Proc. Nat. Acad. Sci., 100, 15, 9067-9072 (2003)
[17] Arifah, B.; Mao, X., Stochastic delay Lotka-Volterra model, J. Math. Anal. Appl., 292, 2, 364-380 (2004) · Zbl 1043.92034
[18] Cai, Y.; Kang, Y.; Banerjee, M.; Wang, W., A stochastic SIRS epidemic model with infectious force under intervention strategies, J. Differ. Equ., 259, 7463-7502 (2015) · Zbl 1330.35464
[19] Liu, M., Global asymptotic stability of stochastic Lotka-Volterra systems with infinite delays, IMA J. Appl. Math., 80, 1431-1453 (2015) · Zbl 1327.35375
[20] Li, D.; Cui, J.; Liu, M.; Liu, S., The evolutionary dynamics of stochastic epidemic model with nonlinear incidence rate, Bull. Math. Biol., 77, 9, 1705-1743 (2015) · Zbl 1339.92058
[21] Cai, Y.; Kang, Y.; Banerjee, M.; Wang, W., A stochastic epidemic model incorporating media coverage, Commun. Math. Sci., 14, 4, 893-910 (2016) · Zbl 1344.92155
[22] Jiang, D.; Shi, N.; Li, X., Global stability and stochastic permanence of a non-autonomous logistic equation with random perturbation, J. Math. Anal. Appl., 340, 1, 588-597 (2008) · Zbl 1140.60032
[23] Li, X.; Mao, X., Population dynamical behavior of non-autonomous Lotka-Volterra competitive system with random perturbation, Discret. Contin. Dyn. Syst., 24, 2, 523-593 (2009) · Zbl 1161.92048
[24] Liu, M.; Fan, M., Permanence of stochastic Lotka-Volterra systems, J. Nonlinear Sci. (2016)
[25] Lahrouz, A.; Omari, L., Extinction and stationary distribution of a stochastic SIRS epidemic model with non-linear incidence, Stat. Probab. Lett., 83, 960-968 (2013) · Zbl 1402.92396
[26] Yang, Q.; Mao, X., Stochastic dynamics of SIRS epidemic models with random perturbation, Math. Biosci. Eng., 11, 4, 1003-1025 (2014) · Zbl 1306.92064
[27] Du, N.; Nhu, N., Permanence and extinction of certain stochastic SIR models perturbed by a complex type of noises, Appl. Math. Lett., 64, 223-230 (2017) · Zbl 1354.92090
[28] Xu, C., Global threshold dynamics of a stochastic differential equation SIS model, J. Math. Anal. Appl., 447, 736-757 (2017) · Zbl 1350.92057
[29] Liu, Q.; Jiang, D., The threshold of a stochastic delayed SIR epidemic model with vaccination, Physica A, 461, 140-147 (2016) · Zbl 1400.92517
[30] Zhao, D., Study on the threshold of a stochastic SIR epidemic model and its extensions, Commun. Nonlinear Sci. Numer. Simul., 38, 172-177 (2016) · Zbl 1471.92370
[31] Li, J.; Shan, M.; Banerjee, M.; Wang, W., Stochastic dynamics of feline immunodeficiency virus within cat populations, J. Frankl. Inst., 353, 4191-4212 (2016) · Zbl 1347.93046
[32] Liu, Y.; Shan, M.; Lian, X.; Wang, W., Stochastic extinction and persistence of a parasite-host epidemiological model, Physica A, 462, 586-602 (2016) · Zbl 1400.60080
[33] Xie, F.; Shan, M.; Lian, X.; Wang, W., Periodic solution of a stochastic HBV infection model with logistic hepatocyte growth, Appl. Math. Comput., 293, 630-641 (2017) · Zbl 1411.92296
[34] Britton, T.; Lindenstrand, D., Epidemic modelling: Aspects where stochastic epidemic models: A survey, Math. Biosci., 222, 1, 109-116 (2010) · Zbl 1178.92046
[35] Dalal, N.; Greenhalgh, D.; Mao, X., A stochastic model of AIDS and condom use, J. Math. Anal. Appl., 325, 1, 36-53 (2007) · Zbl 1101.92037
[36] Dalal, N.; Greenhalgh, D.; Mao, X., A stochastic model for internal HIV dynamics, J. Math. Anal. Appl., 341, 2, 1084-1101 (2008) · Zbl 1132.92015
[37] Britton, T., Stochastic epidemic models: A survey, Math. Biosci., 225, 1, 24-35 (2010) · Zbl 1188.92031
[38] Ball, F.; Neal, P., A general model for stochastic SIR epidemics with two levels of mixing, Math. Biosci., 180, 73-102 (2002) · Zbl 1015.92034
[39] Ball, F.; Sirl, D.; Trapman, P., Analysis of a stochastic SIR epidemic on a random network incorporating household structure, Math. Biosci., 224, 2, 53-73 (2010) · Zbl 1192.92037
[40] Gray, A.; Greenhalgh, D.; Hu, L.; Mao, X.; Pan, J., A stochastic differential equation SIS epidemic model, SIAM J. Appl. Math., 71, 3, 876-902 (2011) · Zbl 1263.34068
[41] Lahrouz, A.; Omari, L.; Kiouach, D., Global analysis of a deterministic and stochastic nonlinear SIRS epidemic model, Nonlinear Anal.: Model. Control, 16, 1, 59-76 (2011) · Zbl 1271.93015
[42] Liu, Z., Dynamics of positive solutions to SIR and SEIR epidemic models with saturated incidence rates, Nonlinear Anal.: Real World Appl., 14, 3, 1286-1299 (2013) · Zbl 1261.34040
[43] Cai, Y.; Wang, X.; Wang, W.; Zhao, M., Stochastic dynamics of a SIRS epidemic model with ratio-dependent incidence rate, Abstr. Appl. Anal., 2013, 172631 (2013) · Zbl 1302.92123
[44] van Herwaarden, O. A.; Grasman, J., Stochastic epidemics: major outbreaks and the duration of the endemic period, J. Math. Biol., 33, 6, 581-601 (1995) · Zbl 0830.92024
[45] Allen, L. J.S., An Introduction to Stochastic Processes with Applications to Biology (2003), Pearson Education: Pearson Education New Jersey · Zbl 1205.60001
[46] Yang, Q.; Jiang, D.; Shi, N.; Ji, C., The ergodicity and extinction of stochastically perturbed SIR and SEIR epidemic models with saturated incidence, J. Math. Anal. Appl., 388, 1, 248-271 (2012) · Zbl 1231.92058
[47] Anderson, R. M.; May, R. M., Population biology of infectious diseases: Part i, Nature, 280, 5721, 361 (1979)
[48] Mukhopadhyay, B. B.; Tapaswi, P. K., An SIRS epidemic model of japanese encephalitis, Int. J. Math. Math. Sci., 17, 2, 347-355 (1994) · Zbl 0794.92022
[49] Tumwiine, J.; Mugisha, J. Y.T.; Luboobi, L. S., A mathematical model for the dynamics of malaria in a human host and mosquito vector with temporary immunity, Appl. Math. Comput., 189, 2, 1953-1965 (2007) · Zbl 1117.92039
[50] Bain, C., Applied mathematical ecology, J. Epidemiol. Commun. Health, 44, 3, 254 (1990)
[51] Korobeinikov, A.; Maini, P. K., Non-linear incidence and stability of infectious disease models, Math. Med. Biol., 22, 2, 113-128 (2005) · Zbl 1076.92048
[52] Hethcote, H. W., The mathematics of infectious diseases, SIAM Rev., 42, 4, 599-653 (2000) · Zbl 0993.92033
[53] Fred, B.; Carlos, C.-C., Mathematical Models in Population Biology and Epidemiology (2012), Springer · Zbl 1302.92001
[54] Capasso, V.; Serio, G., A generalization of the Kermack-Mckendrick deterministic epidemic model, Math. Biosci., 42, 1, 43-61 (1978) · Zbl 0398.92026
[55] Liu, W.; Levin, S. A.; Iwasa, Y., Influence of nonlinear incidence rates upon the behavior of SIRS epidemiological models, J. Math. Biol., 23, 2, 187-204 (1986) · Zbl 0582.92023
[56] Yuan, S.; Li, B., Global dynamics of an epidemic model with a ratio-dependent nonlinear incidence rate, Discret. Dyn. Nat. Soc., 2009, 609306 (2009), (13 pages) · Zbl 1177.37089
[57] May, R. M., Stability and complexity in model ecosystems (1973), Princeton University Press
[58] Bellet, L. R., Ergodic properties of Markov processes, Open Quantum Systems II, 1-39 (2006), Springer: Springer Berlin Heidelberg · Zbl 1126.60057
[59] Meyn, S. P.; Tweedie, R. L., Stability of Markovian processes III: Foster-Lyapunov criteria for continuous-time processes, Adv. Appl. Probab., 518-548 (1993) · Zbl 0781.60053
[60] Mattingly, J. C.; Stuart, A. M.; Higham, D. J., Ergodicity for SDES and approximations: locally Lipschitz vector fields and degenerate noise, Stoch. Processes Appl., 101, 2, 185-232 (2002) · Zbl 1075.60072
[61] Khasminskii, R., Stochastic Stability of Differential Equations, 66 (2012), Springer-Verlag: Springer-Verlag Berlin Heidelberg · Zbl 1259.60058
[62] Driessche, P.; Watmough, J., Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180, 1, 29-48 (2002) · Zbl 1015.92036
[63] LaSalle, J. P., The stability of dynamical systems. The stability of dynamical systems, Regional Conference Series in Applied Mathematics (1976), Society for Industrial and Applied Mathematics: Society for Industrial and Applied Mathematics Philadelphia · Zbl 0364.93002
[64] Lyapunov, A. M., The general problem of the stability of motion, Int. J. Control, 55, 3, 531-773 (1992) · Zbl 0786.70001
[65] Athreya, A.; Kolba, T.; Mattingly, J. C., Propagating Lyapunov functions to prove noise-induced stabilization, Electron. J. Probab., 17, 96, 1-38 (2012) · Zbl 1308.37003
[66] Skorokhod, A. V., Asymptotic methods in the theory of stochastic differential equations, American Mathematical Society, 78 (2009)
[67] Karatzas, I.; Shreve, S., Brownian Motion and Stochastic Calculus (1988), Springer-Verlag: Springer-Verlag New York Inc. · Zbl 0638.60065
[68] Strang, G., Linear Algebra and its Applications (2006), Thomson Learning, Inc.: Thomson Learning, Inc. Belmont, California
[69] Zhu, C.; Yin, G., Asymptotic properties of hybrid diffusion systems, SIAM J Control Optim., 46, 4, 1155-1179 (2007) · Zbl 1140.93045
[70] Higham, D. J., An algorithmic introduction to numerical simulation of stochastic differential equations, SIAM Rev., 43, 3, 525-546 (2001) · Zbl 0979.65007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.