×

Coincidence of variable exponent Herz spaces with variable exponent Morrey type spaces and boundedness of sublinear operators in these spaces. (English) Zbl 1494.46028

For bounded variable exponents \(p(\cdot):\mathbb{R}^n\to[1,\infty)\) and \(q(\cdot):\mathbb{R}_+\to[1,\infty)\), consider the corresponding variable exponent Lebesgue spaces \(L^{p(\cdot)}(\mathbb{R}^n)\) and \(L^{q(\cdot)}(\mathbb{R}_+,\frac{dt}{t})\), respectively. For \(0<\gamma<\delta\) and a suitable function \(\omega:\mathbb{R}^n\times\mathbb{R}_+\to\mathbb{R}_+\), the authors introduce the global variable exponent Herz space \(H_{\omega(\cdot,\cdot),\gamma,\delta}^{p(\cdot),q(\cdot)}(\mathbb{R}^n)\) as the set of functions \(f\) on \(\mathbb{R}^n\) such that \[ \|f\|:=\sup_{\xi\in\mathbb{R}^n} \left\| \omega(\xi,t)\left\| f\chi_{B(\xi,\delta t)\setminus B(\xi,\gamma t)} \right\|_{L^{p(\cdot)}(\mathbb{R}^n)} \right\|_{L^{p(\cdot)}(\mathbb{R}_+,\frac{dt}{t})}<\infty. \] Similarly, for a suitable function \(\omega:\mathbb{R}_+\to\mathbb{R}_+\), the local variable exponent Herz space is defined as the set of functions \(f\) on \(\mathbb{R}^n\) such that \[ \|f\|:= \left\| \omega(t)\left\| f\chi_{B(0,\delta t)\setminus B(0,\gamma t)} \right\|_{L^{p(\cdot)}(\mathbb{R}^n)} \right\|_{L^{p(\cdot)}(\mathbb{R}_+,\frac{dt}{t})}<\infty. \] Here \(B(x,r)\) denotes the ball centered at \(x\in\mathbb{R}^n\) of radius \(r>0\). The authors show that variable Morrey type spaces and complementary variable Morrey type spaces are included into the scale of these generalized variable Herz spaces. They also prove the boundedness of a class of sublinear operators \(T\), satisfying the size condition \(|Tf(x)|\le C\int_{\mathbb{R}^n}\frac{|f(y)|}{|x-y|^n}dy\) for \(x\notin\mathrm{supp}\,f\), in generalized variable Herz spaces with application to variable Morrey type spaces and their complementary spaces, based on the mentioned inclusion.

MSC:

46E30 Spaces of measurable functions (\(L^p\)-spaces, Orlicz spaces, Köthe function spaces, Lorentz spaces, rearrangement invariant spaces, ideal spaces, etc.)
47B38 Linear operators on function spaces (general)
Full Text: DOI

References:

[1] Aboulaich, R.; Boujena, S.; El Guarmah, E., Sur un modèle non-linéaire pour le débruitage de l’image, C. R. Math. Acad. Sci. Paris, 345, 8, 425-429 (2007) · Zbl 1214.35034
[2] Aboulaich, R.; Meskine, D.; Souissi, A., New diffusion models in image processing, Comput. Math. Appl., 56, 4, 874-882 (2008) · Zbl 1155.35389
[3] Acerbi, E.; Mingione, G., Regularity results for electrorheological fluids, the stationary case, C. R. Math. Acad. Sci. Paris, 334, 9, 817-822 (2002) · Zbl 1017.76098
[4] Acerbi, E.; Mingione, G., Regularity results for stationary electrorheological fluids, Arch. Ration. Mech. Anal., 164, 3, 213-259 (2002) · Zbl 1038.76058
[5] Adams, DR, Lectures on lp-potential theory, Dept. Math. Univ. Umeå. Preprint, 2, 1-74 (1981)
[6] Antontsev, SN; Rodrigues, JF, On stationary thermorheological viscous flows, Ann. Univ. Ferrara, Sez. VII, Sci. Mat., 52, 1, 19-36 (2006) · Zbl 1117.76004
[7] Almeida, A.; Drihem, D., Maximal, potential and singular type operators on Herz spaces with variable exponents, J. Math. Anal. Appl., 394, 2, 781-795 (2012) · Zbl 1250.42077
[8] Almeida, A.; Hasanov, J.; Samko, S., Maximal and potential operators in variable exponent Morrey spaces, Georgian Math. J., 15, 2, 195-208 (2008) · Zbl 1263.42002
[9] Blomgren, P., Chan, T., Mulet, P., Wong, C. K.: Total variation image restoration, numerical methods and extensions. In: Proceedings of the 1997 IEEE International Conference on Image Processing, vol. III, pp. 384-387 (1997)
[10] Bollt, EM; Chartrand, R.; Esedoḡlu, S.; Schultz, P.; Vixie, KR, Graduated adaptive image denoising, local compromise between total variation and isotropic diffusion, Adv. Comput. Math., 31, 1-3, 61-85 (2009) · Zbl 1169.94302
[11] Burenkov, VI, Recent progress in studying the boundedness of classical operators of real analysis in general Morrey-type spaces, I. Eurasian Math. J., 3, 3, 11-32 (2012) · Zbl 1270.42014
[12] Burenkov, VI, Recent progress in studying the boundedness of classical operators of real analysis in general Morrey-type spaces, II. Eurasian Math. J., 4, 1, 21-45 (2013) · Zbl 1277.42001
[13] Burenkov, VI; Guliyev, HV, Necessary and sufficient conditions for boundedness of the maximal operator in local Morrey-type spaces, Studia Math., 163, 2, 157-176 (2004) · Zbl 1044.42015
[14] Burenkov, V. I., Guliyev, H. V., Guliyev, V. S.: On Boundedness of the Fractional Maximal Operator from Complementary Morrey-type Spaces to 1 Spaces. The Interaction of Analysis and Geometry, 17-32, Contemp Math. vol. 424. Amer. Math. Soc., Providence (2007) · Zbl 1234.42006
[15] Burenkov, VI; Guliyev, HV; Guliyev, VS, Necessary and sufficient conditions for the boundedness of fractional maximal operators in local Morrey-type spaces, J. Comput. Appl. Math., 208, 1, 280-301 (2007) · Zbl 1134.46014
[16] Chen, Y.; Guo, W.; Zeng, Q.; Liu, Y., A nonstandard smoothing in reconstruction of apparent diffusion coefficient profiles from diffusion weighted images, Inverse Probl. Imaging, 2, 2, 205-224 (2008) · Zbl 1391.94063
[17] Chen, Y.; Levine, S.; Rao, M., Variable exponent, linear growth functionals in image restoration, SIAM J. Appl. Math., 66, 4, 1383-1406 (2006) · Zbl 1102.49010
[18] Cruz-Uribe, D.; Fiorenza, A., Variable Lebesgue Spaces: Foundations and Harmonic Analysis (2013), Birkhäuser: Basel, Birkhäuser · Zbl 1268.46002
[19] Diening, L.; Harjulehto, P.; HästÖ, P.; RŮžička, M., Lebesgue and Sobolev Spaces with Variable Exponents (2011), Berlin: Springer, Berlin · Zbl 1222.46002
[20] Feichtinger, H.G.: Choosing function spaces in harmonic analysis. In Excursions in Harmonic Analysis, vol. 4. Series: Appl. Numer. Harmon. Anal. Birkhäuser, 65-101 (2015) · Zbl 1377.42028
[21] Feichtinger, HG; Weisz, F., Herz spaces and summability of Fourier transforms, Math. Nachr., 281, 3, 309-324 (2008) · Zbl 1189.42001
[22] Flett, TM, Some elementary inequalities for integrals with applications to Fourier transforms, Proc. Lond. Math. Soc., 29, 538-556 (1974) · Zbl 0318.46044
[23] Grafakos, L.; Li, X.; Yang, D., Bilinear operators on Herz-type Hardy spaces, Trans. Amer. Math. Soc., 350, 3, 1249-1275 (1998) · Zbl 0893.47044
[24] Guliyev, VS, Integral operators on function spaces on the homogeneous groups and on domains in \(\mathbb{R}^n\) ℝn (in Russian). D.Sc. dissertation, 1-329 (1994), Moscow: Math. Institute, Moscow
[25] Guliyev, V. S.: Function spaces, integral operators and two weighted inequalities on homogeneous groups. Some Application (in Russian), Casioglu (1999)
[26] Guliev, V.; Hasanov, J.; Samko, S., Maximal, potential and singular operators in the local “complementary” variable exponent Morrey type spaces, J. Math. Anal. Appl., 401, 1, 72-84 (2013) · Zbl 1261.42037
[27] Guliev, V.; Hasanov, J.; Samko, S., Boundedness of the maximal, potential and singular operators in the generalized variable exponent Morrey spaces, Math. Scand., 107, 285-304 (2010) · Zbl 1213.42077
[28] Guliyev, VS; Samko, SG, Maximal, potential, and singular operators in the generalized variable exponent Morrey spaces on unbounded sets, J. Math. Sci. (N.Y.), 193, 2, 228-248 (2013) · Zbl 1278.42030
[29] Harjulehto, P.; Hästö, P.; Lê, ÚV; Nuortio, M., Overview of differential equations with non-standard growth, Nonlinear Anal., 72, 12, 4551-4574 (2010) · Zbl 1188.35072
[30] Hernández, E.; Yang, D., Interpolation of Herz spaces and applications, Math. Nachr., 205, 1, 69-87 (1999) · Zbl 0936.41001
[31] Herz, C.S.: Lipschitz spaces and Bernstein’s theorem on absolutely convergent Fourier transforms. J. Math. Mech. 18, 283-323 (1968/69) · Zbl 0177.15701
[32] Izuki, M., Boundedness of vector-valued sublinear operators on Herz-Morrey spaces with variable exponent, Math. Sci. Res. J., 13, 10, 243-253 (2009) · Zbl 1193.42078
[33] Izuki, M., Boundedness of sublinear operators on Herz spaces with variable exponent and application to wavelet characterization, Anal. Math., 13, 36, 33-50 (2010) · Zbl 1224.42025
[34] Johnson, R., Temperatures, Riesz potentials and the Lipschitz spaces of Herz, Proc. Lond. Math. Soc., 27, 2, 290-316 (1973) · Zbl 0262.46037
[35] Johnson, R., Lipschitz spaces, Littlewood-Paley spaces, and convoluteurs, Proc. Lond. Math. Soc., 29, 1, 127-141 (1974) · Zbl 0295.46051
[36] Komori, Y., Notes on singular integrals on some inhomogeneous Herz spaces, Taiwanese J. Math., 8, 3, 547-556 (2004) · Zbl 1090.42008
[37] Leonardi, S.: Remarks on the regularity of solutions of elliptic systems. In: Sequeira, A., Veiga, H. B., Videman, J. H. (eds.) Applied Nonlinear Analysis, pp 325-344. Kluwer, New York (1999) · Zbl 0952.35034
[38] Leonardi, S., Weighted Miranda-Talenti inequality and applications to equations with discontinuous coefficients, Comment. Math. Univ. Carolin., 43, 1, 43-59 (2002) · Zbl 1090.35045
[39] Li, X.; Yang, D., Boundedness of some sublinear operators on Herz spaces, Illinois J. Math., 40, 484-501 (1996) · Zbl 0956.46025
[40] Matuszewska, W.; Orlicz, W., On certain properties of φ-functions, Bull. Acad. Pol. Sci., Sér. Sci. Math. Astron. Phys., 8, 439-443 (1960) · Zbl 0101.09001
[41] Matuszewska, W.; Orlicz, W., On some classes of functions with regard to their orders of growth, Stud. Math., 26, 11-24 (1965) · Zbl 0134.31604
[42] Mingione, G., Regularity of minima, an invitation to the dark side of the calculus of variations, Appl. Math., 51, 4, 355-426 (2006) · Zbl 1164.49324
[43] Rafeiro, H., Samko, N., Samko, S.: Morrey-Campanato Spaces: an Overview. In: Operator Theory, Pseudo-Differential Equations, and Mathematical Physics, vol. 228 of Operator Theory: Advances and Applications, pp. 293-324. Birkhäuser (2013) · Zbl 1273.46019
[44] Růžička, M., Electrorheological Fluids, Modeling and Mathematical Theory (2000), Berlin: Springer, Berlin · Zbl 0962.76001
[45] Růžička, M., Modeling, mathematical and numerical analysis of electrorheological fluids, Appl. Math., 49, 6, 565-609 (2004) · Zbl 1099.35103
[46] Kokilashvili, V., Meskhi, A., Rafeiro, H., Samko, S.: Integral Operators in Non-Standard Function Spaces, vol. 1. Variable Exponent Lebesgue and Amalgam Spaces, Birkhäuser (2016) · Zbl 1385.47001
[47] Kokilashvili, V., Meskhi, A., Rafeiro, H., Samko, S.: Integral Operators in Non-Standard Function Spaces, volume 2. Variable Exponent Hölder, Morrey-Campanato and Grand Spaces, Birkhäuser (2016) · Zbl 1385.47001
[48] Nafis, H., Rafeiro, H., Zaighum, M. A.: A note on the boundedness of sublinear operators on grand variable Herz spaces. J. Inequal. Appl. Paper No. 1 13 (2020) · Zbl 1503.42012
[49] Rafeiro, H.; Samko, S., Riesz potential operator in continual variable exponents Herz spaces, Math. Nachr., 288, 4, 465-475 (2015) · Zbl 1325.46034
[50] Rafeiro, H.; Samko, S., Herz spaces meet morrey type spaces and complementary morrey type spaces, J. Fourier Anal. Appl., 26, 74 (2020) · Zbl 1464.46035
[51] Samko, N., Maximal, potential and singular operators in vanishing generalized Morrey spaces, J. Glob. Optim., 57, 4, 1385-1399 (2013) · Zbl 1287.46024
[52] Samko, N., Weighted Hardy operators in the local generalized vanishing Morrey Spaces, Positivity, 17, 3, 683-706 (2013) · Zbl 1282.46031
[53] Samko, N., Parameter depending Matuszewska-Orlicz type indices and their applications, AIP Conf. Proc., 1046, 126-129 (2008)
[54] Samko, S., Variable exponent Herz spaces, Mediterr. J. Math., 10, 4, 2007-2025 (2013) · Zbl 1285.46027
[55] Samko, S., Morrey spaces are closely embedded between vanishing Stummel spaces, Math. Ineq. Appl., 17, 2, 627-639 (2014) · Zbl 1306.46030
[56] Stummel, F., Singuläre elliptische Differentialoperatoren in Hilbertschen räumen, Math. Ann., 132, 150-176 (1956) · Zbl 0070.34603
[57] Wunderli, T., On time flows of minimizers of general convex functionals of linear growth with variable exponent in BV space and stability of pseudo-solutions, J. Math. Anal. Appl., 364, 2, 5915-98 (2010) · Zbl 1183.49024
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.