×

Choosing function spaces in harmonic analysis. (English) Zbl 1377.42028

Balan, Radu (ed.) et al., Excursions in harmonic analysis, Volume 4. The February Fourier talks at the Norbert Wiener Center, College Park, MD, USA, 2002–2013. Cham: Birkhäuser/Springer (ISBN 978-3-319-20187-0/hbk; 978-3-319-20188-7/ebook). Applied and Numerical Harmonic Analysis, 65-101 (2015).
Summary: Without doubt function spaces play a crucial role in harmonic analysis. Moreover many function spaces arose from questions in Fourier analysis. Here we would like to draw the attention to the question: “Which function spaces are useful for which problem?” Looking into the books on Fourier analysis one may come to the conclusion that it has almost become a dogma that one has to study Lebesgue integration and \(\boldsymbol L^p\)-spaces properly in order to have a chance to understand the Fourier transform. For the study of PDEs one has to resort to Sobolev spaces, or the Schwartz theory of tempered distribution, where suddenly Lebesgue spaces play a minor role. Finally, numerical applications make use of the FFT (fast Fourier transform), which has a vast range of applications in signal processing, but in the corresponding engineering books neither Lebesgue nor Schwartz theory plays a significant role. “Strange objects” like a Dirac distribution or Dirac combs (used to prove sampling theorems) are often used in a mysterious way, divergent integrals are giving magically useful results. Cautious authors provide some hint to the fact that “mathematicians know how to give those objects a correct meaning”. More recently, other function systems such as wavelets and Gabor expansions have come into the picture as well as the theory of spline-type spaces and irregular sampling have gained importance. In this context the classical function spaces such as \(\boldsymbol L^p\)-spaces or even Sobolev and Besov spaces are not really helpful and do not allow to derive good results. Instead, Wiener amalgam spaces and modulation spaces are playing a major role there. It is the purpose of this chapter to initiate a discussion about the “information content” of function spaces and their “usefulness”. In fact, even the discussion of the meaning of such words may be a stimulating challenge for the community and worth the effort. When I illustrate this circle of problems in the context of time-frequency analysis, but also with respect to potential usefulness for the teaching of the subject to engineers, I do not mean to specifically promote my favorite spaces, but rather show – in a context very familiar to me – how I want to understand the question. Of course such a description is subjective, while, on the other hand, it provides a kind of experience report, indicating that I personally found those spaces useful for many of the things I have been doing in the last decades. It also favors obviously less popular spaces over the well-known and frequently used ones.
For the entire collection see [Zbl 1357.42001].

MSC:

42B35 Function spaces arising in harmonic analysis
Full Text: DOI

References:

[1] R. Aceska, H.G. Feichtinger, Reproducing kernels and variable bandwidth. J. Funct. Spaces Appl., Art. ID 469341 (2012) · Zbl 1264.46018
[2] Adams, D. R., Sets and functions of finite L^p-capacity, Indiana Univ. Math. J., 27, 4, 611-627 (1978) · Zbl 0384.31004 · doi:10.1512/iumj.1978.27.27040
[3] Aldroubi, A.; Feichtinger, H. G.; Zhou, D. X., Non-uniform sampling: exact reconstruction from non-uniformly distributed weighted-averages, Wavelet Analysis: Twenty Years Developments Proceedings of the International Conference of Computational Harmonic Analysis, Hong Kong, China, June 4-8, 2001, volume 1 of Ser. Anal, 1-8 (2002), Singapore: World Science Publication, Singapore · Zbl 1038.42030 · doi:10.1142/9789812776679_0001
[4] Aldroubi, A.; Gröchenig, K., Nonuniform sampling and reconstruction in shift-invariant spaces, SIAM Rev., 43, 4, 585-620 (2001) · Zbl 0995.42022 · doi:10.1137/S0036144501386986
[5] J.-P. Antoine, C. Trapani, Partial Inner Product Spaces - Theory and Applications. Lecture Notes in Mathematics, vol. 1986 (Springer, Berlin, 2009) · Zbl 1195.46001
[6] J. Arazy, S.D. Fisher, Some aspects of the minimal, Möbius-invariant space of analytic functions on the unit disc, in Interpolation Spaces and Allied Topics in Analysis, ed. by M. Cwikel, J. Peetre. Proceedings of the Conference held in Lund, Sweden, August 29-September 1, 1983. Lecture Notes in Mathematics, vol. 1070 (Springer, Berlin, 1984), pp. 24-44 · Zbl 0553.46021
[7] Arazy, J.; Fisher, S. D., The uniqueness of the Dirichlet space among Möbius-invariant Hilbert spaces, Ill. J. Math., 29, 3, 449-462 (1985) · Zbl 0555.30021
[8] Arazy, J.; Fisher, S.; Peetre, J., Möbius invariant function spaces, J. Reine Angew. Math., 363, 110-145 (1985) · Zbl 0566.30042
[9] J. Arazy, S. Fisher, J. Peetre, Möbius invariant spaces of analytic functions, in Complex Analysis I. Proc Spec Year, College Park/Md 1985-86, ed. by C.A. Berenstein. Lecture Notes in Mathematics, vol. 1275 (Springer, Berlin, 1987), pp. 10-22 · Zbl 0643.30038
[10] Aronszajn, N., Theory of reproducing kernels, Trans. Am. Math. Soc., 68, 337-404 (1950) · Zbl 0037.20701 · doi:10.1090/S0002-9947-1950-0051437-7
[11] Ascensi, G.; Feichtinger, H. G.; Kaiblinger, N., Dilation of the Weyl symbol and Balian-low theorem, Trans. Am. Math. Soc., 366, 7, 3865-3880 (2014) · Zbl 1298.47059 · doi:10.1090/S0002-9947-2013-06074-6
[12] Benedek, A.; Panzone, R., The space L^p, with mixed norm, Duke Math. J., 28, 3, 301-324 (1961) · Zbl 0107.08902 · doi:10.1215/S0012-7094-61-02828-9
[13] Benedetto, J. J.; Heil, C.; Walnut, D. F., Differentiation and the Balian-low theorem, J. Fourier Anal. Appl., 1, 4, 355-402 (1995) · Zbl 0887.42026 · doi:10.1007/s00041-001-4016-5
[14] Benedetto, J. J.; Czaja, W.; Powell, A. M.; Sterbenz, J., An endpoint \((1,\infty )\) Balian-low theorem, Math. Res. Lett., 13, 3, 467-474 (2006) · Zbl 1226.42022 · doi:10.4310/MRL.2006.v13.n3.a11
[15] Bennett, C.; Sharpley, R. C., Interpolation of Operators (1988), London: Academic, London · Zbl 0647.46057
[16] J. Bergh, J. Löfström, Interpolation Spaces. An Introduction. Grundlehren der Mathematischen Wissenschaften, vol. 223 (Springer, Berlin, 1976) · Zbl 0344.46071
[17] J.-P. Bertrandias, C. Dupuis, Transformation de Fourier sur les espaces \(l^p(L^{p^{{\prime}} })\) . Ann. Inst. Fourier (Grenoble) 29(1), 189-206 (1979) · Zbl 0387.42003
[18] J.-P. Bertrandias, C. Datry, C. Dupuis, Unions et intersections d’espaces L^p invariantes par translation ou convolution. Ann. Inst. Fourier (Grenoble) 28(2), 53-84 (1978) · Zbl 0365.46029
[19] A. Beurling, Construction and analysis of some convolution algebras. Ann. Inst. Fourier (Grenoble) 14(2), 1-32 (1964) · Zbl 0133.07501
[20] Borup, L.; Nielsen, M., Frame decomposition of decomposition spaces, J. Fourier Anal. Appl., 13, 1, 39-70 (2007) · Zbl 1126.42008 · doi:10.1007/s00041-006-6024-y
[21] Braun, W.; Feichtinger, H. G., Banach spaces of distributions having two module structures, J. Funct. Anal., 51, 174-212 (1983) · Zbl 0515.46045 · doi:10.1016/0022-1236(83)90025-3
[22] Bruhat, F., Distributions sur un groupe localement compact et applications à l etude des représentations des groupes p-adiques, Bull. Soc. Math. France, 89, 43-75 (1961) · Zbl 0128.35701
[23] Busby, R. C.; Smith, H. A., Product-convolution operators and mixed-norm spaces, Trans. Am. Math. Soc., 263, 309-341 (1981) · Zbl 0465.43003 · doi:10.1090/S0002-9947-1981-0594411-4
[24] Carleson, L., On convergence and growth of partial sums of Fourier series, Acta Math., 116, 135-157 (1966) · Zbl 0144.06402 · doi:10.1007/BF02392815
[25] Cartier, P., Über einige integralformeln in der theorie der quadratischen Formen, Math. Z., 84, 93-100 (1964) · Zbl 0135.08701 · doi:10.1007/BF01117117
[26] Cerda, J.; Martin, J.; Silvestre, P., Capacitary function spaces, Collect. Math., 62, 1, 95-118 (2011) · Zbl 1225.46021 · doi:10.1007/s13348-010-0031-7
[27] Christensen, O.; Laugesen, R. S., Approximately dual frame pairs in Hilbert spaces and applications to Gabor frames, Sampl. Theory Signal Image Process., 9, 1-3, 77-89 (2010) · Zbl 1228.42031
[28] Coifman, R. R.; Weiss, G., Extensions of Hardy spaces and their use in analysis, Bull. Am. Math. Soc., 83, 4, 569-645 (1977) · Zbl 0358.30023 · doi:10.1090/S0002-9904-1977-14325-5
[29] Cooley, J.; Tukey, J., An algorithm for the machine calculation of complex Fourier series, Math. Comput., 19, 297-301 (1965) · Zbl 0127.09002 · doi:10.1090/S0025-5718-1965-0178586-1
[30] Cordero, E.; Nicola, F., Pseudodifferential operators on l^p, Wiener amalgam and modulation spaces. Int. Math. Res. Notices, 2010, 10, 1860-1893 (2010) · Zbl 1194.35525
[31] E. Cordero, H.G. Feichtinger, F. Luef, Banach Gelfand triples for Gabor analysis, in Pseudo-Differential Operators, ed. by L. Rodino, M.W. Wong. Lecture Notes in Mathematics, vol. 1949 (Springer, Berlin, 2008), pp. 1-33 · Zbl 1161.35060
[32] Cordero, E.; Nicola, F.; Rodino, L., On the global boundedness of Fourier integral operators, Ann. Global Anal. Geom., 38, 4, 373-398 (2010) · Zbl 1200.35347 · doi:10.1007/s10455-010-9219-z
[33] Cordero, E.; Gröchenig, K.; Nicola, F., Approximation of Fourier integral operators by Gabor multipliers, J. Fourier Anal. Appl., 18, 4, 661-684 (2012) · Zbl 1264.35296 · doi:10.1007/s00041-011-9214-1
[34] Cordero, E.; Toft, J.; Wahlberg, P., Sharp results for the Weyl product on modulation spaces, J. Funct. Anal., 267, 8, 3016-3057 (2014) · Zbl 1317.35307 · doi:10.1016/j.jfa.2014.07.011
[35] Dahlke, S.; Kutyniok, G.; Steidl, G.; Teschke, G., Shearlet coorbit spaces and associated Banach frames, Appl. Comput. Harmon. Anal., 27, 2, 195-214 (2009) · Zbl 1171.42019 · doi:10.1016/j.acha.2009.02.004
[36] Dahlke, S.; Steidl, G.; Teschke, G., The continuous shearlet transform in arbitrary space dimensions, J. Fourier Anal. Appl., 16, 3, 340-364 (2010) · Zbl 1194.42038 · doi:10.1007/s00041-009-9107-8
[37] A. Deitmar, A First Course in Harmonic Analysis. Universitext (Springer, New York, NY, 2002) · Zbl 0997.43001
[38] Derighetti, A., Closed subgroups as Ditkin sets, J. Funct. Anal., 266, 3, 1702-1715 (2014) · Zbl 1296.43001 · doi:10.1016/j.jfa.2013.11.001
[39] Diening, L., Riesz potential and Sobolev embeddings on generalized Lebesgue and Sobolev spaces L^p(⋅ ) and W^k, p(⋅ ), Math. Nachr., 268, 31-43 (2004) · Zbl 1065.46024 · doi:10.1002/mana.200310157
[40] Diening, L.; Hästö, P.; Roudenko, S., Function spaces of variable smoothness and integrability, J. Funct. Anal., 256, 6, 1731-1768 (2009) · Zbl 1179.46028 · doi:10.1016/j.jfa.2009.01.017
[41] Eymard, P., L’algèbre de Fourier d’un groupe localement compact, Bull. Soc. Math. France, 92, 181-236 (1964) · Zbl 0169.46403
[42] Feichtinger, H. G., Multipliers of Banach spaces of functions on groups, Math. Z., 152, 47-58 (1976) · Zbl 0324.43005 · doi:10.1007/BF01214221
[43] Feichtinger, H. G., A characterization of Wiener’s algebra on locally compact groups, Arch. Math. (Basel), 29, 136-140 (1977) · Zbl 0363.43003 · doi:10.1007/BF01220386
[44] Feichtinger, H. G., Gewichtsfunktionen auf lokalkompakten Gruppen, Sitzungsber. Österr. Akad. Wiss., 188, 451-471 (1979) · Zbl 0447.43004
[45] H.G. Feichtinger, Un espace de Banach de distributions tempérées sur les groupes localement compacts abéliens. C. R. Acad. Sci. Paris S’er. A-B 290(17), 791-794 (1980) · Zbl 0433.43002
[46] H.G. Feichtinger, Banach spaces of distributions of Wiener’s type and interpolation, in Proceedings of Conference on Functional Analysis and Approximation, Oberwolfach August 1980, ed. by P. Butzer, S. Nagy, E. Görlich. International Series of Numerical Mathematics, vol. 69 (Birkhäuser, Boston, Basel, 1981), pp. 153-165 · Zbl 0465.43006
[47] Feichtinger, H. G., On a new Segal algebra, Monatsh. Math., 92, 269-289 (1981) · Zbl 0461.43003 · doi:10.1007/BF01320058
[48] H.G. Feichtinger, Banach convolution algebras of Wiener type, in Proceedings of Conference on Functions, Series, Operators, Budapest 1980, ed. by B.S. Nagy, J. Szabados. Colloquia Mathematica Societatis Janos Bolyai, vol. 35 (North-Holland, Amsterdam, 1983), pp. 509-524 · Zbl 0528.43001
[49] Feichtinger, H. G., Modulation spaces on locally compact Abelian groups (1983), Jan: Technical Report, Jan
[50] Feichtinger Minimal, H. G., Banach spaces and atomic representations, Publ. Math. Debrecen, 34, 3-4, 231-240 (1987) · Zbl 0562.43003
[51] H.G. Feichtinger, An elementary approach to Wiener’s third Tauberian theorem for the Euclidean n-space, in Symposia Math., Volume XXIX of Analisa Armonica, Cortona, pp. 267-301, 1988 · Zbl 0651.42005
[52] H.G. Feichtinger, Atomic characterizations of modulation spaces through Gabor-type representations, in Proceedings of Conference on Constructive Function Theory. Rocky Mountain Journal of Mathematics, vol. 19, pp. 113-126 (1989) · Zbl 0780.46023
[53] Feichtinger, H. G., Generalized amalgams, with applications to Fourier transform, Can. J. Math., 42, 3, 395-409 (1990) · Zbl 0733.46014 · doi:10.4153/CJM-1990-022-6
[54] H.G. Feichtinger, New results on regular and irregular sampling based on Wiener amalgams, in Proceedings of Conference on Function Spaces, Edwardsville/IL (USA) 1990, ed. by K. Jarosz. Lecture Notes in Pure Applied Mathematics, vol. 136 (Marcel Dekker, New York, 1992), pp.107-121 · Zbl 0833.46029
[55] H.G. Feichtinger, Wiener amalgams over Euclidean spaces and some of their applications, in Proceedings of Conference on Function spaces, 1990. Lect. Notes Pure Appl. Math 136, (Marcel Dekker, Edwardsville, 1992), pp. 123-137. Zbl 0833.46030 · Zbl 0833.46030
[56] Feichtinger, H. G.; Zhou, D. X., Spline-type spaces, Gabor analysis, in Wavelet Analysis: Twenty Years Developments Proceedings of the International Conference of Computational Harmonic Analysis, Hong Kong, China, 4-8 June 2001, Ser. Anal., vol. 1, 100-122 (2002), River Edge, NJ: World Scientific Publishing, River Edge, NJ · Zbl 1034.42029 · doi:10.1142/9789812776679_0006
[57] Feichtinger, H. G.; Radha, R.; Krishna, M.; Thangavelu, S., Modulation spaces of locally compact Abelian groups, Proceedings of International Conference on Wavelets and Applications, Chennai, January 2002, 1-56 (2003), Allied Publishers: New Delhi, Allied Publishers
[58] Feichtinger, H. G., Modulation spaces: looking back and ahead, Sampl. Theory Signal Image Process., 5, 2, 109-140 (2006) · Zbl 1156.43300
[59] Feichtinger, H. G., Banach Gelfand triples for applications in physics and engineering, in AIP Conference Proceedings, 189-228 (2009), New York: American Institute of Physics, New York
[60] Feichtinger, H. G., Elements of Postmodern Harmonic Analysis, 27 (2014), Berlin: Springer, Berlin
[61] H.G. Feichtinger, W. Braun, Banach spaces of distributions with double module structure and twisted convolution, in Proceedings of Alfred Haar Memorial Conference. Colloquia Mathematica Societatis Janos Bolyai (North Holland Publ. Comp., Amsterdam, Zbl 0515.46045 1985) · Zbl 0619.46037
[62] Feichtinger, H. G.; Gröbner, P., Banach spaces of distributions defined by decomposition methods, I. Math. Nachr., 123, 97-120 (1985) · Zbl 0586.46030 · doi:10.1002/mana.19851230110
[63] Feichtinger, H. G.; Gröchenig, K., Banach spaces related to integrable group representations and their atomic decompositions, I. J. Funct. Anal., 86, 2, 307-340 (1989) · Zbl 0691.46011 · doi:10.1016/0022-1236(89)90055-4
[64] Feichtinger, H. G.; Gröchenig, K., Banach spaces related to integrable group representations and their atomic decompositions, II. Monatsh. Math., 108, 2-3, 129-148 (1989) · Zbl 0713.43004 · doi:10.1007/BF01308667
[65] Feichtinger, H. G.; Gröchenig, K., Irregular sampling theorems and series expansions of band-limited functions, J. Math. Anal. Appl., 167, 2, 530-556 (1992) · Zbl 0776.42021 · doi:10.1016/0022-247X(92)90223-Z
[66] Feichtinger, H. G.; Gröchenig, K., Iterative reconstruction of multivariate band-limited functions from irregular sampling values, SIAM J. Math. Anal., 23, 1, 244-261 (1992) · Zbl 0790.42021 · doi:10.1137/0523013
[67] Feichtinger, H. G.; Gröchenig, K., Error analysis in regular and irregular sampling theory, Appl. Anal., 50, 3-4, 167-189 (1993) · Zbl 0818.42012
[68] Feichtinger, H. G.; Kaiblinger, N., Quasi-interpolation in the Fourier algebra, J. Approx. Theory, 144, 1, 103-118 (2007) · Zbl 1108.41006 · doi:10.1016/j.jat.2006.05.001
[69] H.G. Feichtinger, W. Kozek, Quantization of TF lattice-invariant operators on elementary LCA groups, in Gabor Analysis and Algorithms, ed. by H.G. Feichtinger, T. Strohmer. Applied and Numerical Harmonic Analysis. (Birkhäuser, Boston, MA, 1998), pp. 233-266 · Zbl 0890.42012
[70] H.G. Feichtinger, F. Luef, Wiener amalgam spaces for the fundamental identity of Gabor analysis. Collect. Math. 57(Extra Volume (2006)), 233-253 (2006) · Zbl 1135.39303
[71] H.G. Feichtinger, F. Luef, Banach Gelfand triples for analysis. Notices Am. Math. Soc. (2016, in preparation) · Zbl 1161.35060
[72] Feichtinger, H. G.; Onchis, D., Constructive realization of dual systems for generators of multi-window spline-type spaces, J. Comput. Appl. Math., 234, 12, 3467-3479 (2010) · Zbl 1196.65036 · doi:10.1016/j.cam.2010.05.010
[73] Feichtinger, H. G.; Werther, T.; Benedetto, J., Robustness of regular sampling in Sobolev algebras, Sampling, Wavelets and Tomography, 83-113 (2004), Birkhäuser: Boston, Birkhäuser · Zbl 1070.46022 · doi:10.1007/978-0-8176-8212-5_4
[74] H.G. Feichtinger, G. Zimmermann, A Banach space of test functions for Gabor analysis, in Gabor Analysis and Algorithms: Theory and Applications, ed. by H.G. Feichtinger, T. Strohmer. Applied and Numerical Harmonic Analysis. (Birkhäuser, Boston, MA, 1998), pp. 123-170 · Zbl 0890.42008
[75] Feichtinger, H. G.; Zimmermann, G., An exotic minimal Banach space of functions, Math. Nachr., 239-240, 42-61 (2002) · Zbl 1019.46025 · doi:10.1002/1522-2616(200206)239:1<42::AID-MANA42>3.0.CO;2-#
[76] Feichtinger, H. G.; Gröchenig, K.; Strohmer, T., Efficient numerical methods in non-uniform sampling theory, Numer. Math., 69, 4, 423-440 (1995) · Zbl 0837.65148 · doi:10.1007/s002110050101
[77] H.G. Feichtinger, F. Luef, T. Werther, A guided tour from linear algebra to the foundations of Gabor analysis, in Gabor and Wavelet Frames. Lecture Notes Series, Institute for Mathematical Sciences, National University of Singapore, vol. 10 (World Scientific Publishing, Hackensack, 2007), pp. 1-49 · Zbl 1134.42338
[78] Feichtinger, H. G.; Kozek, W.; Luef, F., Gabor Analysis over finite Abelian groups, Appl. Comput. Harmon. Anal., 26, 2, 230-248 (2009) · Zbl 1162.43002 · doi:10.1016/j.acha.2008.04.006
[79] Feichtinger, H. G.; Grybos, A.; Onchis, D., Approximate dual Gabor atoms via the adjoint lattice method, Adv. Comput. Math., 40, 3, 651-665 (2014) · Zbl 1309.42043 · doi:10.1007/s10444-013-9324-1
[80] Figa Talamanca, A., Translation invariant operators in L^p, Duke Math. J., 32, 495-501 (1965) · Zbl 0142.10403 · doi:10.1215/S0012-7094-65-03250-3
[81] Folland, G. B., A Course in Abstract Harmonic Analysis (1994), Boca Raton: CRC Press, Boca Raton
[82] J.J.F. Fournier, J. Stewart, Amalgams of L^p and ℓ^q. Bull. Amer. Math. Soc. (N.S.) 13, 1-21 (1985) · Zbl 0593.43005
[83] Frazier, M.; Jawerth, B., Decomposition of Besov spaces, Indiana Univ. Math. J., 34, 777-799 (1985) · Zbl 0551.46018 · doi:10.1512/iumj.1985.34.34041
[84] Frazier, M.; Jawerth, B., A discrete transform and decompositions of distribution spaces, J. Funct. Anal., 93, 1, 34-170 (1990) · Zbl 0716.46031 · doi:10.1016/0022-1236(90)90137-A
[85] Frazier, M. W.; Jawerth, B. D.; Weiss, G., Littlewood-Paley Theory and the Study of Function Spaces (1991), Providence, RI: American Mathematical Society, Providence, RI · Zbl 0757.42006
[86] Gabor, D., Theory of communication, J. IEE, 93, 26, 429-457 (1946)
[87] P. Gröbner, Banachräume glatter Funktionen und Zerlegungsmethoden. Ph.D. thesis, University of Vienna, 1992
[88] Gröchenig, K., Describing functions: atomic decompositions versus frames, Monatsh. Math., 112, 3, 1-41 (1991) · Zbl 0736.42022 · doi:10.1007/BF01321715
[89] K. Gröchenig, Foundations of Time-Frequency Analysis. Applied and Numerical Harmonic Analysis (Birkhäuser, Boston, MA, 2001) · Zbl 0966.42020
[90] Gröchenig, K., Time-Frequency analysis of Sjörstrand’s class, Rev. Mat. Iberoam., 22, 2, 703-724 (2006) · Zbl 1127.35089 · doi:10.4171/RMI/471
[91] K. Gröchenig, Weight functions in time-frequency analysis, in Pseudodifferential Operators: Partial Differential Equations and Time-Frequency Analysis, ed. by L. Rodino, et al. Fields Institute Communications, vol. 52 (American Mathematical Society, Providence, RI, 2007), pp. 343-366 · Zbl 1132.42313
[92] Gröchenig, K.; Heil, C., Modulation spaces and pseudodifferential operators, Integr. Equat. Oper. Theory, 34, 4, 439-457 (1999) · Zbl 0936.35209 · doi:10.1007/BF01272884
[93] Gröchenig, K.; Strohmer, T., Pseudodifferential operators on locally compact abelian groups and Sjöstrand’s symbol class, J. Reine Angew. Math., 613, 121-146 (2007) · Zbl 1145.47034
[94] Gröchenig, K.; Han, D.; Heil, C.; Kutyniok, G., The Balian-Low theorem for symplectic lattices in higher dimensions, Appl. Comput. Harmon. Anal., 13, 2, 169-176 (2002) · Zbl 1017.42027 · doi:10.1016/S1063-5203(02)00506-7
[95] A. Gronskiy, J. Buhmann, How informative are Minimum Spanning Tree algorithms? in IEEE International Symposium on Information Theory (ISIT), 2014, pp. 2277-2281, IEEE, June 2014
[96] Haar, A., Der Massbegriff in der Theorie der kontinuierlichen Gruppen, Ann. Math., 34, 1, 147-169 (1933) · JFM 59.0432.01 · doi:10.2307/1968346
[97] Heil, C.; Krishna, M.; Radha, R.; Thangavelu, S., An introduction to weighted Wiener amalgams, Wavelets and Their Applications (Chennai, January 2002), 183-216 (2003), Allied Publishers: New Delhi, Allied Publishers
[98] Herz, C., Lipschitz spaces and Bernstein’s theorem on absolutely convergent Fourier transforms, J. Math. Mech., 18, 283-323 (1968) · Zbl 0177.15701
[99] E. Hewitt, K.A. Ross, Abstract Harmonic Analysis. Vol. II: Structure and Analysis for Compact Groups. Analysis on Locally Compact Abelian Groups (Springer, Berlin/Heidelberg/New York, 1970) · Zbl 0213.40103
[100] E. Hewitt, K.A. Ross, Abstract Harmonic Analysis. Vol. 1: Structure of Topological Groups; Integration Theory; Group Representations, 2nd edn. (Springer, Berlin/Heidelberg/New York, 1979) · Zbl 0416.43001
[101] Holland, F., Harmonic analysis on amalgams of L^p and ℓ^q, J. Lond. Math. Soc., 10, 295-305 (1975) · Zbl 0314.46029 · doi:10.1112/jlms/s2-10.3.295
[102] Holst, A.; Toft, J.; Wahlberg, P., Weyl Product Algebras and Classical Modulation Spaces (2010), Polish Academy of Sciences: Institute of Mathematics, Banach Center Publications, Warszawa, Polish Academy of Sciences · Zbl 1198.42018 · doi:10.4064/bc88-0-12
[103] Hörmander, L., Pseudo-differential operators, Commun. Pure Appl. Anal., 18, 501-517 (1965) · Zbl 0125.33401 · doi:10.1002/cpa.3160180307
[104] Howell, K. B., Principles of Fourier Analysis (2001), Boca Raton, FL: Chapman and Hall/CRC, Boca Raton, FL · Zbl 1022.42001 · doi:10.1201/9781420036909
[105] Johnson, R., Temperatures, Riesz potentials, and the Lipschitz spaces of Herz, Proc. Lond. Math. Soc. III. Ser., 27, 290-316 (1973) · Zbl 0262.46037 · doi:10.1112/plms/s3-27.2.290
[106] Johnson, R., Maximal subspaces of Besov spaces invariant under multiplication by characters, Trans. Am. Math. Soc., 249, 387-407 (1979) · Zbl 0432.46032 · doi:10.1090/S0002-9947-1979-0525680-5
[107] D.S. Jones, The Theory of Generalised Functions. Reprint of the 1982, 2nd Hardback edn. (Cambridge University Press, Cambridge, 2009) · Zbl 0477.46035
[108] Kaiblinger, N., Approximation of the Fourier transform and the dual Gabor window, J. Fourier Anal. Appl., 11, 1, 25-42 (2005) · Zbl 1064.42022 · doi:10.1007/s00041-004-3070-1
[109] Y. Katznelson, An Introduction to Harmonic Analysis, 3rd Corr. edn. (Cambridge University Press, Cambridge, 2004) · Zbl 1055.43001
[110] Kilpeläinen, T., Weighted Sobolev spaces and capacity, Ann. Acad. Sci. Fenn. Ser. A I Math., 19, 1, 95-113 (1994) · Zbl 0801.46037
[111] Kuhn, T., The Structure of Scientific Revolutions (1996), Chicago: University of Chicago Press, Chicago · doi:10.7208/chicago/9780226458106.001.0001
[112] G. Kutyniok, D. Labate, Shearlets Multiscale Analysis for Multivariate Data. Applied and Numerical Harmonic Analysis (Birkhäuser, Boston, MA, 2012) · Zbl 1237.42001
[113] Larsen, R., An Introduction to the Theory of Multipliers (1971), New York: Springer, New York · Zbl 0213.13301 · doi:10.1007/978-3-642-65030-7
[114] Lemarié, P. G.; Meyer, Y., Ondelettes et bases hilbertiennes (Wavelets and Hilbert bases), Rev. Mat. Iberoam., 2, 1-18 (1986) · Zbl 0657.42028 · doi:10.4171/RMI/22
[115] Lighthill, M. J., Introduction to Fourier Analysis and Generalised Functions (Students’ Edition) (1962), Cambridge: Cambridge University Press, Cambridge
[116] Liu, T. S.; van Rooij, A. C.M., Sums and intersections of normed linear spaces, Math. Nachr., 42, 1-3, 29-42 (1969) · Zbl 0206.42105 · doi:10.1002/mana.19690420103
[117] Loomis, L., An Introduction to Abstract Harmonic Analysis (1953), Toronto/New York/London: Van Nostrand and Co, Toronto/New York/London · Zbl 0052.11701
[118] F. Luef, Gabor analysis, noncommutative tori and Feichtinger’s algebra, in Gabor and Wavelet Frames. Lecture Notes Series, Institute for Mathematical Sciences, National University of Singapore, vol. 10. World Scientific Publishing, Hackensack, 2007), pp. 77-106 · Zbl 1146.46033
[119] Luef, F., Projective modules over non-commutative tori are multi-window Gabor frames for modulation spaces, J. Funct. Anal., 257, 6, 1921-1946 (2009) · Zbl 1335.46064 · doi:10.1016/j.jfa.2009.06.001
[120] Luef, F., Projections in noncommutative tori and Gabor frames, Proc. Am. Math. Soc., 139, 2, 571-582 (2011) · Zbl 1213.42121 · doi:10.1090/S0002-9939-2010-10489-6
[121] Y. Meyer, Minimalité de certains espaces fonctionnels et applications à la théorie des opérateurs (Minimality of certain functional spaces and applications to operator theory). Séminaire Équations aux Dérivées Partielles, pp. 1-12 (1985) · Zbl 0628.46035
[122] Meyer, Y., De la recherche petrolière à la géometrie des espaces de Banach en passant par les paraproduite (From petroleum research to Banach space geometry by way of paraproducts), in Séminaire sur les Équations aux Dérivées Partielles, 1985-1986, Exp. No. I, 11 (1986), Palaiseau: Ecole Polytech, Palaiseau · Zbl 0604.46024
[123] Meyer, Y., Constructions de bases orthonormées d’ondelettes (construction of orthonormal bases of wavelets), Rev. Mat. Iberoam., 4, 1, 31-39 (1988) · Zbl 0719.42028 · doi:10.4171/RMI/62
[124] Musielak, J., Orlicz Spaces and Modular Spaces (1983), Berlin: Springer, Berlin · Zbl 0557.46020
[125] S.M. Nikol’skij, Approximation of Functions of Several Variables and Imbedding Theorems. (Translated from the Russian by J. M. Danskin.) Grundlehren der mathematischen Wissenschaften, Band 205. (Springer, Berlin/Heidelberg/New York, 1975), VIII + 420 p. · Zbl 0307.46024
[126] Nitzan, S.; Olsen, J.-F., A quantitative Balian-Low theorem, J. Fourier Anal. Appl., 19, 5, 1078-1092 (2013) · Zbl 1304.42079 · doi:10.1007/s00041-013-9289-y
[127] Pap, M., Properties of the voice transform of the Blaschke group and connections with atomic decomposition results in the weighted Bergman spaces, J. Math. Anal. Appl., 389, 1, 340-350 (2012) · Zbl 1235.43005 · doi:10.1016/j.jmaa.2011.11.060
[128] M. Pap, F. Schipp, The voice transform on the Blaschke group I. Pure Math. Appl. (PUMA) 17(3-4), 387-395 (2006) · Zbl 1224.42099
[129] J. Peetre, New Thoughts on Besov Spaces. Duke University Mathematics Series, vol. 1 (Mathematics Department, Duke University, Durham, 1976) · Zbl 0356.46038
[130] Pietsch, A., Approximation spaces, J. Approx. Theory, 32, 2, 115-134 (1981) · Zbl 0489.47008 · doi:10.1016/0021-9045(81)90109-X
[131] M. Rao, Z. Ren, Theory of Orlicz Spaces. Pure and Applied Mathematics, vol. 146 (Marcel Dekker, New York, 1991) · Zbl 0724.46032
[132] Y.B. Rutitskij, M. Krasnoselskij, Convex Functions and Orlicz Spaces. (P. Noordhoff Ltd. IX, Groningen, The Netherlands, 1961), 249 p. · Zbl 0095.09103
[133] Schwartz, L., Theorie des Distributions (1959) · Zbl 0085.09703
[134] H.S. Shapiro, Topics in Approximation Theory. Lecture Notes in Mathematics, vol. 187 (Springer, Berlin, 1971) · Zbl 0213.08501
[135] Stein, E. M., Singular Integrals and Differentiability Properties of Functions (1970), Princeton, NJ: Princeton University Press, Princeton, NJ · Zbl 0207.13501
[136] J. Toft, Continuity and Schatten properties for Toeplitz operators on modulation spaces, in Modern Trends in Pseudo-Differential Operators, ed. by J. Toft, M.W. Wong, H. Zhu. Operator Theory: Advances and Applications, vol. 172 (Birkhäuser, Basel, 2007), pp. 313-328 · Zbl 1147.47018
[137] H. Triebel, Spaces of Besov-Hardy-Sobolev Type. (B. G. Teubner, Leipzig, 1978) · Zbl 0408.46024
[138] H. Triebel, Theory of Function Spaces. Monographs in Mathematics, vol. 78. (Birkhäuser, Basel, 1983) · Zbl 0546.46028
[139] H. Triebel, Theory of Function Spaces II. Monographs in Mathematics, vol. 84 (Birkhäuser, Basel, 1992) · Zbl 0763.46025
[140] Varopoulos, N., Tensor algebras and harmonic analysis, Acta Math., 119, 51-112 (1967) · Zbl 0163.37002 · doi:10.1007/BF02392079
[141] A. Weil, L���integration dans les Groupes Topologiques et ses Applications. (Hermann and Cie, Paris, 1940) · JFM 66.1205.02
[142] Wiener, N., The Fourier Integral and Certain of Its Applications (1933), Cambridge: Cambridge University Press, Cambridge · JFM 59.0416.01
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.