×

Spectral properties of the Dirac operator coupled with \(\delta\)-shell interactions. (English) Zbl 1490.81073

Summary: Let \(\Omega \subset\mathbb{R}^3\) be an open set. We study the spectral properties of the free Dirac operator \(\mathcal{H} :=- i \alpha \cdot \nabla + m\beta\) coupled with the singular potential \(V_{\kappa} =(\epsilon I_4 +\mu \beta + \eta (\alpha \cdot N))\delta_{\partial \Omega} \), where \(\kappa =(\epsilon, \mu, \eta)\in\mathbb{R}^3\). The open set \(\Omega\) can be either a \(\mathcal{C}^2\)-bounded domain or a locally deformed half-space. In both cases, self-adjointness is proved and several spectral properties are given. In particular, we give a complete description of the essential spectrum of \(\mathcal{H} + V_{\kappa}\) in the case of a locally deformed half-space, for the so-called critical combinations of coupling constants. Finally, we introduce a new model of Dirac operators with \(\delta\)-interactions and deal with its spectral properties. More precisely, we study the coupling \(\mathcal{H}_{\zeta, \upsilon} =\mathcal{H}+ \left( -i\zeta \alpha_1\alpha_2\alpha_3 + i\upsilon \beta \left( \alpha\cdot N\right) \right) \delta_{\partial \Omega}\), with \(\zeta, \upsilon \in\mathbb{R}\). In particular, we show that \(\mathcal{H}_{0,\pm 2}\) is essentially self-adjoint and generates confinement.

MSC:

81Q10 Selfadjoint operator theory in quantum theory, including spectral analysis
81V05 Strong interaction, including quantum chromodynamics
35P15 Estimates of eigenvalues in context of PDEs
58C40 Spectral theory; eigenvalue problems on manifolds

References:

[1] Arrizabalaga, N.; Mas, A.; Vega, L., Shell interactions for Dirac operators, J. Math. Pures Appl. (9), 102, 617-639 (2014) · Zbl 1297.81083 · doi:10.1016/j.matpur.2013.12.006
[2] Arrizabalaga, N.; Mas, A.; Vega, L., Shell interactions for Dirac operators: on the point spectrum and the confinement, SIAMJ. Math. Anal., 47, 1044-1069 (2015) · Zbl 1314.81083 · doi:10.1137/14097759X
[3] Arrizabalaga, N.; Mas, A.; Vega, L., An isoperimetric-type inequality for electrostatic shell interactions for Dirac operators, Commun. Math. Phys., 344, 2, 483-505 (2016) · Zbl 1341.81023 · doi:10.1007/s00220-015-2481-y
[4] Axelsson, A., Grognard, R., Hogan, J., McIntosh, A.: Harmonic analysis of Dirac operators on Lipschitz domains. In: Brackx, F., Chisholm, J., Soucek, V. (eds.), Clifford Analysis and Its Applications, Proceedings of the NATA Advanced Research Workshop, Kluwer Academic Publishers, The Netherlands, pp. 231-246 (2001) · Zbl 1094.30500
[5] Behrndt, J.; Exner, P.; Holzmann, M.; Lotoreichik, V., On the spectral properties of Dirac operators with electrostatic \(\delta \)-shell interaction, J. Math. Pures Appl., 9, 111, 47-78 (2018) · Zbl 1382.81095 · doi:10.1016/j.matpur.2017.07.018
[6] Behrndt, J.; Exner, P.; Holzmann, M.; Lotoreichik, V., On Dirac operators in \({\mathbb{R}}^3\) with electrostatic and Lorentz scalar \(\delta \)-shell interactions, Quantum Stud. Math. Found., 6, 295-314 (2019) · Zbl 1423.81072 · doi:10.1007/s40509-019-00186-6
[7] Behrndt, J.; Holzmann, M., On Dirac operators with electrostatic \(\delta \)-shell interactions of critical strength, J. Spectr. Theory, 10, 147 (2020) · Zbl 1437.35595 · doi:10.4171/JST/289
[8] Behrndt, J.; Holzmann, M.; Mas, A., Self-adjoint Dirac operators on domains in \({\mathbb{R}}^3\), Ann. Henri Poincaré, 21, 2681-2735 (2020) · Zbl 1454.81079 · doi:10.1007/s00023-020-00925-1
[9] Behrndt, J., Holzmann, M., Ourmèires-Bonafos, T., Pankrashkin, K.: Two-dimensional Dirac operators with singular interactions supported on closed curves. J. Funct. Anal., 279, p. 46. Id/No 108700 (2020) · Zbl 1446.35155
[10] Behrndt, J., Holzmann, M., Tušek, M.: Spectral transition for Dirac operators with electrostatic \(\delta \)-shell potential supported on the straight line. arXiv preprint (2021). arXiv:2107.01156
[11] Behrndt, J., Hassi, S., de Snoo, H.S.V.: Boundary Value Problems, Weyl Functions, and Differential Operators, Monographs in Mathematics, Vol. 108. Birkhäuser/-Springer, Cham, vii+772 pp. ISBN 978-3-030-36713-8 (2020) · Zbl 1457.47001
[12] Benhellal, B., Spectral analysis of Dirac operators with singular interactions supported on the boundaries of rough domains, J. Math. Phys., 63 (2022) · Zbl 1507.81087 · doi:10.1063/5.0071243
[13] Brüning, J.; Geyler, V.; Pankrashkin, K., Spectra of self-adjoint extensions and applications to solvable Schrödinger operators, Rev. Math. Phys., 20, 1-70 (2008) · Zbl 1163.81007 · doi:10.1142/S0129055X08003249
[14] Cassano, B., Lotoreichik, V., Mas, A., Tušek, M.: General \(\delta \)-Shell Interactions for the two-dimensional Dirac Operator: Self-adjointness and Approximation. arXiv preprint arXiv:2102.09988 (2021)
[15] Chodos, A.; Jaffe, RL; Johnson, K.; Thorn, CB; Weisskopf, VF, New extended model of hadrons, Phys. Rev. D, 9, 12, 3471-3495 (1974) · doi:10.1103/PhysRevD.9.3471
[16] Dittrich, J.; Exner, P.; Šeba, P., Dirac operators with a spherically \(\delta \)-shell interactions, J. Math. Phys., 30, 2875-2882 (1989) · Zbl 0694.46053 · doi:10.1063/1.528469
[17] Dominguez-Adame, F., Exact solutions of the Dirac equation with surface delta interactions, J. Phys. A Math. Gen., 23, 1993-1999 (1990) · Zbl 0713.35076 · doi:10.1088/0305-4470/23/11/023
[18] Edmunds, DE; Evans, WD, Elliptic Differential Operators and Spectral Analysis. Springer Monographs in Mathematics (2018), Cham: Springer, Cham · Zbl 1436.35003 · doi:10.1007/978-3-030-02125-2
[19] Exner, P., Kondej, S., Lotoreichik, V.: Asymptotics of the bound state induced by \(\delta \)-interaction supported on a weakly deformed plane. J. Math. Phys., 59(1):013501, 17 (2018) · Zbl 1380.81118
[20] Folland, G., Introduction to Partial Differential Equations (1995), Princeton: Princeton University Press, Princeton · Zbl 0841.35001
[21] Holzmann, M., A note on the three dimensional Dirac operator with zigzag type boundary conditions, Complex Anal. Oper. Theory, 15, 15 (2021) · Zbl 1465.81026 · doi:10.1007/s11785-021-01090-x
[22] Holzmann, M.; Ourmèires-Bonafos, T.; Pankrashkin, K., Dirac operators with Lorentz scalar shell interactions, Rev. Math. Phys., 30, 1850013 (2018) · Zbl 1393.35194 · doi:10.1142/S0129055X18500137
[23] Johnson, K., The MIT bag model, Acta Phys. Pol. B, 6, 865 (1975)
[24] Mas, A., Dirac operators, shell interactions, and discontinuous gauge functions across the boundary, J. Math. Phys., 58 (2017) · Zbl 1357.81091 · doi:10.1063/1.4974359
[25] Mas, A.; Pizichillo, F., The relativistic spherical \(\delta \)-shell interaction in \({\mathbb{R}}^3\): spectrum and approximation, Journal of Mathematical Physics, 58, 082102 (2017) · Zbl 1370.81071 · doi:10.1063/1.5000381
[26] Mas, A., Pizichillo, F.: Klein’s Paradox and the relativistic \(\delta \)-shell interaction in \({\mathbb{R}}^3\). Anal. PDE 11(3), 705-744 (2018) · Zbl 1508.81832
[27] McLean, W., Strongly Elliptic Systems and Boundary Integral Equations (2000), Cambridge: Cambridge University Press, Cambridge · Zbl 0948.35001
[28] Medková, D., The Laplace Equation: Boundary Value Problems on Bounded and Unbounded Lipschitz Domains (2018), Cham: Springer, Cham · Zbl 1457.35002 · doi:10.1007/978-3-319-74307-3
[29] Ourmères-Bonafos, T., Vega, L.: A strategy for self-adjointness of Dirac operators: applications to the MIT bag model and \(\delta \)-shell interactions. Publications matemàtiques, 62(2) (2018) · Zbl 06918953
[30] Ourmiéres-Bonafos, T., Pizzichillo, F.: Dirac operators and shell interactions: a survey. In: Mathematical Challenges of Zero-Range Physics, A. Michelangeli, ed.,Cham, Springer International Publishing, pp. 105-131 (2021)
[31] Robert, D., Autour de l’approximation semi-classique, Progress in Mathematics, 68 (1987), Boston: Birkhäuser Boston Inc, Boston · Zbl 0621.35001
[32] Shabani, J.; Vyabandi, A., Exactly solvable models of relativistic \(\delta \)-sphere interactions in quantum mechanics, J. Math. Phys., 43, 6064-6084 (2002) · Zbl 1060.81024 · doi:10.1063/1.1518785
[33] Teschl, G., Mathematical Methods in Quantum Mechanics. Graduate Studies in Mathematics, With applications to Schrödinger Operators (2014), Providence: American Mathematical Society, Providence · Zbl 1342.81003
[34] Thaller, B.: The Dirac Equation, Text and Monographs in Physics. Springer, Berlin (1992)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.