×

Two-dimensional Dirac operators with singular interactions supported on closed curves. (English) Zbl 1446.35155

Summary: We study the two-dimensional Dirac operator with a class of interface conditions along a smooth closed curve, which model the so-called electrostatic and Lorentz scalar interactions of constant strengths, and we provide a rigorous description of their self-adjoint realizations and their qualitative spectral properties. We are able to cover in a uniform way all so-called critical combinations of coupling constants, for which there is a loss of regularity in the operator domain. For the case of a non-zero mass term, this results in an additional point in the essential spectrum, which reflects the creation of an infinite number of eigenvalues in the central gap, and the position of this point can be made arbitrary by a suitable choice of the parameters. The analysis is based on a combination of the extension theory of symmetric operators with a detailed study of boundary integral operators viewed as periodic pseudodifferential operators.

MSC:

35Q41 Time-dependent Schrödinger equations and Dirac equations
81Q10 Selfadjoint operator theory in quantum theory, including spectral analysis
35S05 Pseudodifferential operators as generalizations of partial differential operators
78A35 Motion of charged particles

Software:

DLMF

References:

[1] Albeverio, S.; Gesztesy, F.; Høegh-Krohn, R.; Holden, H., Solvable Models in Quantum Mechanics. With an Appendix by Pavel Exner (2005), Amer. Math. Soc. Chelsea Publishing: Amer. Math. Soc. Chelsea Publishing Providence, RI · Zbl 1078.81003
[2] Arrizabalaga, N.; Le Treust, L.; Mas, A.; Raymond, N., The MIT Bag Model as an infinite mass limit, J. Éc. Polytech. Math., 6, 329-365 (2019) · Zbl 1420.35094
[3] Arrizabalaga, N.; Mas, A.; Vega, L., Shell interactions for Dirac operators, J. Math. Pures Appl., 102, 617-639 (2014) · Zbl 1297.81083
[4] Arrizabalaga, N.; Mas, A.; Vega, L., Shell interactions for Dirac operators: on the point spectrum and the confinement, SIAM J. Math. Anal., 47, 1044-1069 (2015) · Zbl 1314.81083
[5] Arrizabalaga, N.; Mas, A.; Vega, L., An isoperimetric-type inequality for electrostatic shell interactions for Dirac operators, Commun. Math. Phys., 344, 483-505 (2016) · Zbl 1341.81023
[6] Behrndt, J.; Exner, P.; Holzmann, M.; Lotoreichik, V., On the spectral properties of Dirac operators with electrostatic δ-shell interactions, J. Math. Pures Appl., 111, 47-78 (2018) · Zbl 1382.81095
[7] Behrndt, J.; Exner, P.; Holzmann, M.; Lotoreichik, V., On Dirac operators in \(\mathbb{R}^3\) with electrostatic and Lorentz scalar δ-shell interactions, Quantum Stud. Math. Found., 6, 295-314 (2019) · Zbl 1423.81072
[8] Behrndt, J.; Hassi, S.; de Snoo, H. S.V., Boundary Value Problems, Weyl Functions, and Differential Operators, Monographs in Mathematics, vol. 108 (2020), Birkhäuser/Springer: Birkhäuser/Springer Cham · Zbl 1457.47001
[9] Behrndt, J.; Holzmann, M., On Dirac operators with electrostatic δ-shell interactions of critical strength, J. Spectr. Theory, 10, 147-184 (2020) · Zbl 1437.35595
[10] Behrndt, J.; Langer, M.; Lotoreichik, V., Schrödinger operators with δ and \(\delta^\prime \)-potentials supported on hypersurfaces, Ann. Henri Poincaré, 14, 385-423 (2013) · Zbl 1275.81027
[11] Benguria, R. D.; Fournais, S.; Stockmeyer, E.; Van Den Bosch, H., Self-adjointness of two-dimensional Dirac operators on domains, Ann. Henri Poincaré, 18, 1371-1383 (2017) · Zbl 1364.81117
[12] Brasche, J.; Exner, P.; Kuperin, Y.; Šeba, P., Schrödinger operators with singular interactions, J. Math. Anal. Appl., 184, 112-139 (1994) · Zbl 0820.47005
[13] Brüning, J.; Geyler, V.; Pankrashkin, K., Spectra of self-adjoint extensions and applications to solvable Schrödinger operators, Rev. Math. Phys., 20, 1-70 (2008) · Zbl 1163.81007
[14] Cacciapuoti, C.; Pankrashkin, K.; Posilicano, A., Self-adjoint indefinite Laplacians, J. Anal. Math., 139, 155-177 (2019) · Zbl 1444.47039
[15] Carlone, R.; Malamud, M.; Posilicano, A., On the spectral theory of Gesztesy-Šeba realizations of 1-D Dirac operators with point interactions on a discrete set, J. Differ. Equ., 254, 9, 3835-3902 (2013) · Zbl 1277.34120
[16] Derkach, V. A.; Malamud, M. M., Generalized resolvents and the boundary value problems for Hermitian operators with gaps, J. Funct. Anal., 95, 1-95 (1991) · Zbl 0748.47004
[17] Derkach, V. A.; Malamud, M. M., The extension theory of Hermitian operators and the moment problem, J. Math. Sci., 73, 141-242 (1995) · Zbl 0848.47004
[18] Derkach, V. A.; Malamud, M. M., Extension theory of symmetric operators and boundary value problems, (Proceedings of Institute of Mathematics of NAS of Ukraine, vol. 104 (2017))
[19] Dittrich, J.; Exner, P.; Šeba, P., Dirac operators with a spherically symmetric δ-shell interaction, J. Math. Phys., 30, 12, 2875-2882 (1989) · Zbl 0694.46053
[20] Exner, P., Leaky quantum graphs: a review, (Analysis on Graphs and Its Applications. Analysis on Graphs and Its Applications, Proc. Sympos. Pure Math., vol. 77 (2008), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI), 523-564 · Zbl 1153.81487
[21] Folland, G. B., Introduction to Partial Differential Equations (1995), Princeton University Press: Princeton University Press Princeton, NJ · Zbl 0841.35001
[22] Freitas, P.; Siegl, P., Spectra of graphene nanoribbons with armchair and zigzag boundary conditions, Rev. Math. Phys., 26, Article 1450018 pp. (2014) · Zbl 1309.47088
[23] Gesztesy, F.; Šeba, P., New analytically solvable models of relativistic point interactions, Lett. Math. Phys., 13, 4, 345-358 (1987) · Zbl 0646.60107
[24] Holzmann, M.; Ourmières-Bonafos, T.; Pankrashkin, K., Dirac operators with Lorentz scalar shell interactions, Rev. Math. Phys., 30, Article 1850013 pp. (2018) · Zbl 1393.35194
[25] McLean, W., Strongly Elliptic Systems and Boundary Integral Equations (2000), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0948.35001
[26] Moroianu, A.; Ourmières-Bonafos, T.; Pankrashkin, K., Dirac operators on hypersurfaces as large mass limits, Commun. Math. Phys., 374, 1963-2013 (2020) · Zbl 1445.35273
[27] Olver, F. W.J.; Lozier, D. W.; Boisvert, R. F.; Clark, C. W., NIST Handbook of Mathematical Functions (2010), NIST & Cambridge University Press, online version at · Zbl 1198.00002
[28] Ourmières-Bonafos, T.; Pizzichillo, F., Dirac operators and shell interactions: a survey, (Mathematical Challenges of Zero-Range Physics. Mathematical Challenges of Zero-Range Physics, Springer INdAM Series (2020)), in press, preprint
[29] Ourmières-Bonafos, T.; Vega, L., A strategy for self-adjointness of Dirac operators: application to the MIT bag model and δ-shell interactions, Publ. Mat., 62, 397-437 (2018) · Zbl 06918953
[30] Pankrashkin, K.; Richard, S., One-dimensional Dirac operators with zero-range interactions: spectral, scattering, and topological results, J. Math. Phys., 55, Article 062305 pp. (2014) · Zbl 1298.81080
[31] Pizzichillo, F.; Van Den Bosch, H., Self-adjointness of two-dimensional Dirac operators on corner domains, preprint · Zbl 1486.81111
[32] Posilicano, A., Boundary triples and Weyl functions for singular perturbations of self-adjoint operators, Methods Funct. Anal. Topol., 10, 57-63 (2004) · Zbl 1066.47024
[33] Posilicano, A., Self-adjoint extensions of restrictions, Oper. Matrices, 2, 483-506 (2008) · Zbl 1175.47025
[34] Saranen, J.; Vainikko, G., Periodic Integral and Pseudodifferential Equations with Numerical Approximation (2002), Springer-Verlag: Springer-Verlag Berlin · Zbl 0991.65125
[35] Schmidt, K. M., A remark on boundary value problems for the Dirac operator, Q. J. Math. Oxf. Ser. (2), 46, 509-516 (1995) · Zbl 0864.35092
[36] Stockmayer, E.; Vugalter, S., Infinite mass boundary conditions for Dirac operators, J. Spectr. Theory, 9, 569-600 (2019) · Zbl 1419.81014
[37] Thaller, B., The Dirac Equation (1992), Springer-Verlag: Springer-Verlag Berlin · Zbl 0881.47021
[38] Tretter, C., Spectral Theory of Block Operator Matrices and Applications (2008), Imperial College Press · Zbl 1173.47003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.