×

Existence and Hyers-Ulam stability results for a class of fractional order delay differential equations with non-instantaneous impulses. (English) Zbl 1490.74036

Summary: In this paper, we mainly consider the existence and Hyers-Ulam stability of solutions for a class of fractional differential equations involving time-varying delays and non-instantaneous impulses. By the Krasnoselskii’s fixed point theorem, we present the new constructive existence results for the addressed equation. In addition, we deduce that the equations have Hyers-Ulam stable solutions by utilizing generalized Grönwall’s inequality. Some results in this literature are new and improve some early conclusions.

MSC:

74H20 Existence of solutions of dynamical problems in solid mechanics
34D20 Stability of solutions to ordinary differential equations
26A33 Fractional derivatives and integrals
Full Text: DOI

References:

[1] Ali, Z.—Zada, A.—Shah, K.: Ulam stability to a toppled systems of nonlinear implicit fractional order boundary value problem, Bound. Value Probl. 2018 (2018), Art. ID 175. · Zbl 1499.34023
[2] Derakhshan, M.—Ansari, A.: On Hyers-Ulam stability of fractional differential equations with Prabhakar derivatives, Analysis (Berlin) 38(1) (2018), 37-46. · Zbl 1384.34012
[3] Ding, Y.: Ulam-Hyers stability of fractional impulsive differential equations, J. Nonlinear Sci. Appl. 11(8) (2018), 953-959. · Zbl 1449.34274
[4] Fečkan, M.—Wang, J.: Periodic impulsive fractional differential equations, Adv. Nonlinear Anal. 8(1) (2019), 482-496. · Zbl 1418.34010
[5] Haq, F.—Shah, K.—Rahman, G.—Shahzad, M.: Hyers-Ulam stability to a class of fractional differential equations with boundary conditions, Int. J. Appl. Comput. Math. 3 (2017), S1135-S1147.
[6] Hyers, D.: On the stability of the linear functional equation, Proc. Natl. Acad. Sci. USA 27 (1941), 222-224. · Zbl 0061.26403
[7] Khan, H.—Tunc, C.—Chen, W.—Khan, A.: Existence theorems and Hyers-Ulam stability for a class of hybrid fractional differential equations with P-Laplacian operator, J. Appl. Anal. Comput. 8(4) (2018), 1211-1226. · Zbl 1461.34009
[8] Khan, H.—Sun, H.—Chen, W.—Baleanu, D.: Inequalities for new class of fractional integral operators, J. Nonlinear Sci. Appl. 10(12) (2017), 6166-6176. · Zbl 1412.26036
[9] Khan, H.—Chen, W.—Sun, H.: Analysis of positive solution and Hyers-Ulam stability for a class of singular fractional differential equations with p-Laplacian in Banach space, Math. Methods Appl. Sci. 41(9) (2018), 3430-3440. · Zbl 1394.34017
[10] Khan, H.—Li, Y.—Sun, H.—Khan, A.: Existence of solution and Hyers-Ulam stability for a coupled system of fractional differential equations with p-Laplacian operator, J. Nonlinear Sci. Appl. 10(10) (2017), 5219-5229. · Zbl 1412.47140
[11] Khan, H.—Li, Y.—Chen, W.—Baleanu, D.—Khan, A.: Existence theorems and Hyers-Ulam stability for a coupled system of fractional differential equations with p-Laplacian operator, Bound. Value Probl. 2017 (2017), Art. ID 157. · Zbl 1483.35320
[12] Khan, H.—Khan, A.—Jarad, F.—Shah, A.: Existence and data dependence theorems for solutions of an ABC-fractional order impulsive system, Chaos Solitons Fractals 131 (2020), Art. ID 109477. · Zbl 1495.34108
[13] Khan, A.—Khan, H.—Gómez-Aguilar, J. F.—Abdeljawad, T.: Existence and Hyers-Ulam stability for a nonlinear singular fractional differential equations with Mittag-Leffler kernel, Chaos Solitons Fractals 127 (2019), 422-427. · Zbl 1448.34046
[14] Khan, H.—Jarad, F.—Abdeljawad, T.—Khan, A.: A singular ABC-fractional differential equation with p-Laplacian operator, Chaos Solitons Fractals 129 (2019), 56-61. · Zbl 1448.34047
[15] Khan, H.—Li, Y.J.—Khan, A.—Khan, A.: Existence of solution for a fractional-order Lotka-Volterra reaction-diffusion model with Mittag-Leffler kernel, Math. Methods Appl. Sci. 42(9) (2019), 3377-3387. · Zbl 1459.35378
[16] Khan, H.—Abdeljawad, T.— Aslam, M.—Khan, R.A.—Khan, A.: Existence of positive solution and Hyers-Ulam stability for a nonlinear singular-delay-fractional differential equation, Adv. Difference Equ. 2019 (2019), Art. ID 104. · Zbl 1459.34024
[17] Khan, H.—Gómez-Aguilar, J. F.—Khan, A.—Khan, T. S.: Stability analysis for fractional order advection-reaction diffusion system, Physica A 521 (2019), 737-751. · Zbl 1514.35461
[18] Khan, H.—Tunc, C.—Baleanu, D.—Khan, A.—Alkhazzan, A.: Inequalities for n-class of functions using the Saigo fractional integral operator, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM. 113(3) (2019), 2407-2420. · Zbl 1437.52005
[19] Khan, H.—Khan, A.—Abdeljawad, T.—Alkhazzan, A.: Existence results in Banach space for a nonlinear impulsive system, Adv. Difference Equ. 2019 (2019), Art. ID 18. · Zbl 1458.34127
[20] Khan, H.—Chen, W.—Khan, A.—Khan, T. S.—Al-Madlal, Q. M.: Hyers-Ulam stability and existence criteria for coupled fractional differential equations involving p-Laplacian operator, Adv. Difference Equ. 2018 (2018), Art. ID 455. · Zbl 1448.34019
[21] Khan, H.—Khan, A.—Chen, W.—Shah, K.: Stability analysis and a numerical scheme for fractional Klein-Gordon equations, Math. Methods Appl. Sci. 42(2) (2019), 723-732. · Zbl 1408.35213
[22] Kilbas, A. A.—Srivastava, H. M.—Trujillo, J. J.: Theory and Applications of Fractional Differential Equations, Elsevier: Amsterdam, 2006. · Zbl 1092.45003
[23] Kucche, K.—Shikhare, P.: Ulam-Hyers stability of integrodifferential equations in Banach spaces via Pachpatte’s inequality, Asian-Eur. J. Math. 11(4) (2018), Art. ID 1850062. · Zbl 1395.45016
[24] Li, X.—Jiang, W.—Xiang, J.: Existence and Hyers-Ulam stability results for nonlinear fractional systems with coupled nonlocal initial conditions, J. Appl. Math. Comput. 50(1-2) (2016), 493-509. · Zbl 1334.34015
[25] Luo, D.—Luo, Z.: Existence and finite-time stability of solutions for a class of nonlinear fractional differential equations with time-varying delays and non-instantaneous impulses, Adv. Difference Equ. 2019 (2019), Art. ID 155. · Zbl 1459.34032
[26] Luo, D.—Shah, K.—Luo, Z.: On the novel Ulam-Hyers stability for a class of nonlinear ψ-Hilfer fractional differential equation with time-varying delays, Mediterr. J. Math. 16(5) (2019), # 112. · Zbl 1429.34080
[27] Miller, K. S.—Rose, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations, Wiley: New York, 1993. · Zbl 0789.26002
[28] Muslim, M.—Kumar, A.—Fečkan, M.: Existence, uniqueness and stability of solutions to second order nonlinear differential equations with non-instantaneous impulses, J. King Saud Univ. 30 (2018), 204-213.
[29] Phat, V. N.—Thanh, N. T.: New criteria for finite-time stability of nonlinear fractional-order delay systems: a Grönwall inequality approach, Appl. Math. Lett. 83 (2018), 169-175. · Zbl 1388.93064
[30] Podlubny, I.—Thimann, K.V.: Fractional Differential Equation. Mathematics in Science and Engineering, Academic Press: New York, 1999. · Zbl 0924.34008
[31] Shah, K.—Wang, J.—Khalil, H.— Khan, R. A.: Existence and numerical solutions of a coupled system of integral BVP for fractional differential equations, Adv. Difference Equ. 2018 (2018), Art. ID 149. · Zbl 1446.65053
[32] Sen, M. De la.: Hyers-Ulam-Rassias stability of functional differential systems with point and distributed delays, Discrete Dyn. Nat. Soc. (2015), Art. ID 492515. · Zbl 1418.39025
[33] Ulam, S.: A Collection of Mathematical Problem, Interscience: New York, 1960. · Zbl 0086.24101
[34] Vanterler, J.—Oliveira, E.: On the Ulam-Hyers-Rassias stability for nonlinear fractional differential equations using the ψ-Hilfer operator, J. Fixed Point Theory Appl. 20(3) (2018), #96. · Zbl 1398.34023
[35] Vanterler, J.—Oliveira, E.: Ulam-Hyers stability of a nonlinear fractional Volterra integro-differential equation, Appl. Math. Lett. 81 (2018), 50-56. · Zbl 1475.45020
[36] Wang, J.— Lin, Z.: A class of impulsive nonautonomous differential equations and Ulam-Hyers-Rassias stability, Math. Methods Appl. Sci. 38(5) (2015), 868-880. · Zbl 1369.34072
[37] Wang, F.—Chen, D.—Zhang, X.—Wu, Y.: The existence and uniqueness theorem of the solution to a class of nonlinear fractional order system with time delay, Appl. Math. Lett. 53 (2016), 45-51. · Zbl 1335.34124
[38] Wang, J.—Shah, K.—Ali, A.: Existence and Hyers-Ulam stability of fractional nonlinear impulsive switched coupled evolution equations, Math. Methods Appl. Sci. 41(6) (2018), 2392-2402. · Zbl 1390.34030
[39] Yang, Z.—Ren, W.—Xu, T.: Ulam-Hyers stability for matrix-valued fractional differential equations, J. Math. Inequal. 12(3) (2018), 665-675. · Zbl 1404.34015
[40] Yu, X.—Wang, J.—Zhang, Y.: On the β-Ulam-Hyers-Rassias stability of nonautonomous impulsive evolution equations, J. Appl. Math. Comput. 48 (2015), 461-475. · Zbl 1321.34075
[41] Zada, A.—Faisal, S.—Li, Y.: Hyers-Ulam-Rassias stability of non-linear delay differential equations, J. Nonlinear Sci. Appl. 10(2) (2017), 504-510. · Zbl 1412.35032
[42] Zada, A.—Faisal, S.—Li, Y.: On the Hyers-Ulam stability of first-order impulsive delay differential equations, J. Funct. Spaces (2016), Art. ID 8164978. · Zbl 1342.34100
[43] Zhou, Y.—Wang, J.—Zhang, L.: Basic Theory of Fractional Differential Equations, World Scientific Publishing: London, 2017. · Zbl 1360.34003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.