×

Existence of solution for a fractional-order Lotka-Volterra reaction-diffusion model with Mittag-Leffler kernel. (English) Zbl 1459.35378

Summary: In the literature, many researchers have studied Lotka-Volterra (L-V) models for different types of studies. In order to continue the study, we consider a fractional-order L-V model involving three different species in the Atangana-Baleanu-Caputo (ABC) sense of fractional derivative. This new model has potentials for a large number of research-oriented studies. The first point that arises is whether the new model has a solution or not. Therefore, to answer this question, we consider the existence and uniqueness (EU) of the solutions and then Hyers-Ulam (HU) stability for the proposed L-V model.

MSC:

35R11 Fractional partial differential equations
35K45 Initial value problems for second-order parabolic systems
35K57 Reaction-diffusion equations
92D25 Population dynamics (general)
Full Text: DOI

References:

[1] KilbasAA, SrivastavaHM, TrujilloJJ. Theory and Applications of Fractional Differential Equations, Vol. 24. Amsterdam: North‐Holland Mathematics Studies; 2006. · Zbl 1092.45003
[2] PodlubnyI. Fractional Differential Equations. New York: Academic Press; 1999. · Zbl 0924.34008
[3] SamkoSG, KilbasAA, MarichevOI. Fractional Integrals and Derivatives: Theory and Applications. Yverdon, Switzerland: Gordon and Breach Science; 1993. · Zbl 0818.26003
[4] HilferR (ed.), ed. Application of Fractional Calculus in Physics. Singapore: World Scientific Publishing Co.; 2000. · Zbl 0998.26002
[5] KaoY, GaoC, WangD. Global exponential stability of reaction‐diffusion Hopfield neural networks with continuously distributed delays. Math Appl. 2008;21(3):457‐462. · Zbl 1174.92306
[6] LuoJ. Fixed points and exponential stability of mild solutions of stochastic partial differential equations with delays. J Math Anal Appl. (2008);342(2):753‐760. https://doi.org/10.1016/j.jmaa.2007.11.019 · Zbl 1157.60065 · doi:10.1016/j.jmaa.2007.11.019
[7] WangL. Global well‐posedness and stability of the mild solutions for a class of stochastic partial functional differential equations. Sci Sin Math. 2017;47(3):371‐382. https://doi.org/10.1360/012016-14 · Zbl 1499.35080 · doi:10.1360/012016-14
[8] WangL, GaoY. Global exponential robust stability of reaction-diffusion interval neural networks with time‐varying delays. Phys Lett. 2006;A350(56):342‐348. https://doi.org/10.1016/j.physleta.2005.10.031 · Zbl 1195.35179 · doi:10.1016/j.physleta.2005.10.031
[9] WangL, ZhangR, WangY. Global exponential stability of reaction‐diffusion cellular neural networks with S‐type distributed time delays. Nonlinear Anal Real World Appl. 2009;10(2):1101‐1113. https://doi.org/10.1016/j.nonrwa.2007.12.002 · Zbl 1167.35404 · doi:10.1016/j.nonrwa.2007.12.002
[10] LuJG. Global exponential stability and periodicity of reaction-diffusion delayed recurrent neural networks with Dirichlet boundary conditions. Chaos Solitons Fract. 2008;35(1):116‐125. https://doi.org/10.1016/j.chaos.2007.05.002 · Zbl 1134.35066 · doi:10.1016/j.chaos.2007.05.002
[11] SinghJ, KumarD, BaleanuD. On the analysis of chemical system pertaining to a fractional derivative with Mittag‐Leffler type kernel. Chaos. 2017;27(103):103113. https://doi.org/10.1063/1.4995032 · Zbl 1390.34027 · doi:10.1063/1.4995032
[12] UllahS, KhanMA, FarooqM. Modeling and analysis of the fractional HBV model with Atangana‐Baleanu derivative. Eur Phys J Plus. 2018;133:133:18 pages.
[13] OliveiraEC, SousaJVC. Ulam-Hyers-Rassias stability for a class of fractional integro‐differential equations. Results Math. 2018;73(111):16 pages. · Zbl 1401.45011
[14] AlkahtaniBST, KocaI, AtanganaA. Analysis of new model of H1N1 spread: model obtained via Mittag‐Leffler function. Adv Mech Eng. 2017;9(8):1‐8.
[15] UllahS, KhanMA, FarooqM. A new fractional model for the dynamics of the hepatitis B virus using the Caputo‐Fabrizio derivative. Eur Phys J Plus. 2018;133(237):14 pages. https://doi.org/10.1140/epjp/i2018-12072-4 · doi:10.1140/epjp/i2018-12072-4
[16] FarazM, HallerG. The Maxey-Riley equation: existence, uniqueness and regularity of solutions. Nonlinear Anal Real World Appl. 2015;22:98‐106. · Zbl 1326.35269
[17] ZhangX, LiuL, WuY. The uniqueness of positive solution for a fractional order model of turbulent flow in a porous medium. Appl Math Lett. 2014;37:26‐33. · Zbl 1320.35007
[18] AtanganaA, KocaI. Model of thin viscous fluid sheet flow within the scope of fractional calculus: fractional derivative with and no singular kernel. Fundamenta Informaticae. 2017;151:145‐159. https://doi.org/10.3233/FI-2017-1484 · Zbl 1375.76020 · doi:10.3233/FI-2017-1484
[19] KhanH, KhanA, ChenW, ShahK. Stability analysis and a numerical scheme for fractional Klein‐Gordon equations. Math Methods Appl Sci. 2019;42(2):723‐32. · Zbl 1408.35213
[20] AbdeljawadT, AlzabutJ. On Riemann‐Liouville fractional q‐difference equations and their application to retarded logistic type model. Math Meth Appl Sci. 2018;41(18):8953‐62. · Zbl 1406.39005
[21] de AlbuquerqueJC, ArajoYL, ClementeR. Existence of bound and ground states for a class of Kirchhoff‐Schrödinger equations involving critical Trudinger‐Moser growth; 2018;15. https://doi.org/10.1002/mma.5382 · Zbl 1412.35115 · doi:10.1002/mma.5382
[22] WangW, LiuF, ChenW. Exponential stability of pseudo almost periodic delayed Nicholson‐type system with patch structure. Math Methods Appl Sci. 2018;42(2):592‐604. https://doi.org/10.1002/mma.5364 · Zbl 1416.34073 · doi:10.1002/mma.5364
[23] PengL, DebboucheA, ZhouY. Existence and approximations of solutions for time‐fractional Navier‐Stokes equations. Math Meth Appl Sci. 2018. https://doi.org/10.1002/mma.4779 · Zbl 1406.35474 · doi:10.1002/mma.4779
[24] WangL, LiK. On positive solutions of the Lotka-Volterra cooperating models with diffusion. Nonlinear Anal. 2003;53:1115‐1125. · Zbl 1028.35070
[25] YuZX, YuanR. Traveling waves for a Lotka-Volterra competition system with diffusion. Math Comput Model. 2011;53:1035‐1043. · Zbl 1217.35198
[26] WangQ, ZhangL. On the multi‐dimensional advective Lotka-Volterra competition systems. Nonlinear Anal Real World Appl. (2017);37:329‐349. · Zbl 1394.92113
[27] MaZ, WuX, YuanR. Nonlinear stability of traveling wave fronts for competitive‐cooperative Lotka-Volterra systems of three species. Appl Math Comput. (2017);315:331‐346. · Zbl 1426.35215
[28] KhanA, LiY, ShahK, KhanTS. On coupled p‐Laplacian fractional differential equations with nonlinear boundary conditions. Complexity. 2017;2017:9 pages. Article ID 8197610. · Zbl 1373.93157
[29] HuoHF, ChenR, WangXY. Modelling and stability of HIV/AIDS epidemic model with treatment. Appl Math Model. 2016;40(13‐14):6550‐9. · Zbl 1465.92119
[30] LiuQ, JiangD, HayatT, AhmadB. Asymptotic behavior of a stochastic delayed HIV‐1 infection model with nonlinear incidence. Physica A Stat Mech Appl. 2017 Nov 15;486:867‐82. · Zbl 1499.92120
[31] JafariH, BaleanuD, KhanH, KhanRA, KhanA. Existence criterion for the solution of fractional order p‐Laplacian boundary value problem. Bound Value Probl. 2015;164:10 pages. · Zbl 1381.34016
[32] WangMX, YQMa. Population evolution in mutualistic Lotka-Volterra system with spatial diffusion. Physica A. (2014);395:228‐235. · Zbl 1395.35110
[33] WangYM. Asymptotic behavior of solutions for a Lotka-Volterra mutualism reaction-diffusion system with time delays. Comput Math Appl. 2009;58:597‐604. · Zbl 1189.35157
[34] XuL, LiuJ, ZhangG. Pattern formation and parameter inversion for a discrete Lotka-Volterra cooperative system. Chaos, Solitons and Fractals. (2018);110:226‐231. · Zbl 1391.39012
[35] AbdeljawadT, BaleanuD. Discrete fractional differences with nonsingular discrete Mittag‐Leffler kernels. Adv Differ Equ. 2016;2016(1):232. · Zbl 1419.34211
[36] JaradF, AbdeljawadT, HammouchZ. On a class of ordinary differential equations in the frame of Atangana-Baleanu fractional derivative. Chaos, Solitons Fractals. 2018;117:16‐20. · Zbl 1442.34016
[37] KhanH, LiY, ChenW, BaleanuD, KhanA. Existence theorems and Hyers‐Ulam stability for a coupled system of fractional differential equations with p‐Laplacian operator. Boundary Value Problems. 2017;2017:157. https://doi.org/10.1186/s13661-017-0878-6 · Zbl 1483.35320 · doi:10.1186/s13661-017-0878-6
[38] KhanH, TuncC, ChenW, KhanA. Existence theorems and Hyers-Ulam stability for a class of hybrid fractional differential equations with p‐Laplacian operator. J Appl Anal Comput. 2018;8(4):1211‐1226. · Zbl 1461.34009
[39] KhanH, ChenW, SunH. Analysis of positive solution and Hyers‐Ulam stability for a class of singular fractional differential equations with p‐Laplacian in Banach space. Math Methods Appl Sci. 2018;41(9):3430‐40. · Zbl 1394.34017
[40] KhanA, SyamMI, ZadaA, KhanH. Stability analysis of nonlinear fractional differential equations with Caputo and Riemann‐Liouville derivatives. Eur Phys J Plus. 2018;133:26. https://doi.org/10.1140/epjp/i2018-12119-6 · doi:10.1140/epjp/i2018-12119-6
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.